@article{BeckerKucharskiRoessleretal.2016, author = {Becker, Nils and Kucharski, Robert and R{\"o}ssler, Wolfgang and Maleszka, Ryszard}, title = {Age-dependent transcriptional and epigenomic responses to light exposure in the honey bee brain}, series = {FEBS Open Bio}, volume = {6}, journal = {FEBS Open Bio}, number = {7}, doi = {10.1002/2211-5463.12084}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147080}, pages = {622-639}, year = {2016}, abstract = {Light is a powerful environmental stimulus of special importance in social honey bees that undergo a behavioral transition from in-hive to outdoor foraging duties. Our previous work has shown that light exposure induces structural neuronal plasticity in the mushroom bodies (MBs), a brain center implicated in processing inputs from sensory modalities. Here, we extended these analyses to the molecular level to unravel light-induced transcriptomic and epigenomic changes in the honey bee brain. We have compared gene expression in brain compartments of 1- and 7-day-old light-exposed honey bees with age-matched dark-kept individuals. We have found a number of differentially expressed genes (DEGs), both novel and conserved, including several genes with reported roles in neuronal plasticity. Most of the DEGs show age-related changes in the amplitude of light-induced expression and are likely to be both developmentally and environmentally regulated. Some of the DEGs are either known to be methylated or are implicated in epigenetic processes suggesting that responses to light exposure are at least partly regulated at the epigenome level. Consistent with this idea light alters the DNA methylation pattern of bgm, one of the DEGs affected by light exposure, and the expression of microRNA miR-932. This confirms the usefulness of our approach to identify candidate genes for neuronal plasticity and provides evidence for the role of epigenetic processes in driving the molecular responses to visual stimulation.}, language = {en} } @phdthesis{Becker2018, author = {Becker, Nils}, title = {Mechanisms and consequences of environmentally and behaviorally induced synaptic plasticity in the honey bee brain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138466}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The brain is the central organ of an animal controlling its behavior. It integrates internal information from the body and external stimuli from the surrounding environment to mediate an appropriate behavioral response. Since the environment is constantly changing, a flexible adjustment of the brain to new conditions is crucial for the animals' fitness. The ability of the nervous system to adapt to new challenges is defined as plasticity. Over the last few decades great advances have been made in understanding the cellular and molecular mechanisms underlying neuronal plasticity. Plasticity may refer to structural changes physically remodeling the neuronal circuit, or to functional adaptations which are manifested in modified synaptic transmission, and in altered response and firing properties of single neurons. These structural and functional modifications are mediated by a complex interplay of environmental stimuli, intracellular signal transduction cascades, protein modifications, gene translation and transcription, and epigenetic gene regulatory mechanisms. However, especially the molecular mechanisms of environmentally-induced structural neuronal plasticity are still poorly understood. In this thesis the honey bee was used as an innovative model organism to investigate this issue. The honey bee with its rich behavioral repertoire, highly sophisticated and plastic neuronal system, sequenced genome and full epigenetic machinery is well suited for studying the molecular underpinnings of environmentally-induced neuronal plasticity. Adult honey bees progress through a series of tasks within the dark hive until after about three weeks they start with foraging activities in the external world. The transition from in-hive to outside tasks is associated with remarkable structural neuronal plasticity. Subdivisions of the mushroom body, a brain region related to higher cognitive functions, are increased in volume. The volume expansion is mediated by a remarkable outgrowth of the dendritic network of mushroom body intrinsic neurons, so called Kenyon cells. In parallel, prominent synaptic structures, referred to as microglomeruli, are pruned. Most interestingly for this thesis, the pruning of microglomeruli and the dendritic expansion in Kenyon cells can be induced by a simple light exposure paradigm. In the first chapter of the present thesis I used this paradigm to induce synaptic plasticity in the mushroom bodies under controlled lab conditions to search for correlating molecular changes which possibly mediate the observed plasticity. I compared the brain transcriptome of light-exposed and dark-kept control bees by whole transcriptome sequencing. This revealed a list of differentially expressed genes (DEGs). The list contains conserved genes which have reported functions in neuronal plasticity, thereby introducing them as candidate genes for plasticity in the honey bee brain. Furthermore, with this transcriptomic approach I discovered many candidate genes with unknown functions or functions so far unrelated to neuronal plasticity suggesting that these novel genes may have yet unrecognized roles in neuronal plasticity. A number of DEGs are known to be methylated or to exert epigenetic modifications on themselves speaking for a strong impact of epigenetic mechanisms in light-induced structural plasticity in the honey bee brain. This notion is supported by a differential methylation pattern of one examined DEG between light-exposed and dark-kept bees as shown in this thesis. Also a plasticity-related microRNA, which is predicted to target genes associated with cytoskeleton formation, was found to be upregulated in light-exposed bees. This speaks for a translation regulatory mechanism in structural plasticity in the honey bee. Another interesting outcome of this study is the age-dependent expression of DEGs. For some plasticity-related DEGs, the amplitude of light-induced expression differs between one- and seven-day-old bees, and also the basal expression level of many DEGs in naive dark-kept control bees significantly varies between the two age groups. This suggests that the responsiveness of plasticity-related genes to environmental stimuli is also under developmental (age-dependent) control, which may be important for normal maturation and for the regulation of age-related changes in behavior. Indeed, I was able to demonstrate in phototaxis experiments that one- and seven-day-old bees show different behaviors in response to light exposure and thus the correlating age-dependent transcriptional differences may serve as mechanisms promoting age-related changes in behavior. Together the results of the transcriptomic study demonstrate the successfulness of my approach to identify candidate molecular mechanisms for environmentally-induced structural plasticity in the honey bee brain. Furthermore, the thesis provides seminal evidence for the implication of DNA methylation in this process. To better understand the role of DNA methylation for neuronal and behavioral plasticity in the honey bee, the second chapter of the thesis aims at characterizing this molecular process under more natural conditions. Therefore, I examined the expression of the DNA methyltransferase 3 (DNMT3) and of Ten-eleven translocation methylcytosine dioxygenase (TET) between in-hive bees and foragers. DNMT3 is responsible for DNA de novo methylation, whereas TET promotes DNA demethylation by converting methylcytosine (5mC) to hydroxymethylcytosine (5hmC). The data suggest that age and experience determine the expression of these two epigenetic key genes. Additionally, in this context, two examined DEGs are shown to be differentially methylated between nurses and foragers. One of these two DEGs, the plasticity related gene bubblegum (bgm), also exhibits an altered DNA methylation pattern in response to light exposure. Hence, these results of my thesis provide additional evidence for the importance of DNA methylation in behavioral and neuronal plasticity. Results from the second chapter of this thesis also suggest additional functions of DNMT3 and TET to their traditional roles in DNA methylation/demethylation. I show that TET is far more expressed in the honey bee brain than DNMT3. This stands in contrast to the relative scarcity of 5hmC compared to 5mC and points at extra functions of this gene like RNA modifications as reported for Drosophila. Antibody staining against the DNMT3 gene product revealed an unexpected rare localization of the enzyme in the nucleus, but a surprisingly high abundance in the cytoplasm. The role of cytoplasmic DNMT3 is unknown. One possibility for the high abundance in the cytoplasm is a regulatory mechanism for DNA methylation by cytoplasmic-nuclear trafficking, or an additional function of DNMT3 in RNA modification, similar to TET. Altogether, this thesis points at future research directions for neuronal plasticity by providing promising evidence for the involvement of epigenetic mechanisms and of a number of new candidate genes in environmentally induced structural plasticity in the honey bee brain. Furthermore, I present data suggesting so far unrecognized functions of DNMT3 which certainly need to be experimentally addressed in the future to fully understand the role of this enzyme.}, subject = {Neuronale Plastizit{\"a}t}, language = {en} } @article{BousquetAntoBachertetal.2021, author = {Bousquet, Jean and Anto, Josep M. and Bachert, Claus and Haahtela, Tari and Zuberbier, Torsten and Czarlewski, Wienczyslawa and Bedbrook, Anna and Bosnic-Anticevich, Sinthia and Walter Canonica, G. and Cardona, Victoria and Costa, Elisio and Cruz, Alvaro A. and Erhola, Marina and Fokkens, Wytske J. and Fonseca, Joao A. and Illario, Maddalena and Ivancevich, Juan-Carlos and Jutel, Marek and Klimek, Ludger and Kuna, Piotr and Kvedariene, Violeta and Le, LTT and Larenas-Linnemann, D{\´e}sir{\´e}e E. and Laune, Daniel and Louren{\c{c}}o, Olga M. and Mel{\´e}n, Erik and Mullol, Joaquim and Niedoszytko, Marek and Odemyr, Mika{\"e}la and Okamoto, Yoshitaka and Papadopoulos, Nikos G. and Patella, Vincenzo and Pfaar, Oliver and Pham-Thi, Nh{\^a}n and Rolland, Christine and Samolinski, Boleslaw and Sheikh, Aziz and Sofiev, Mikhail and Suppli Ulrik, Charlotte and Todo-Bom, Ana and Tomazic, Peter-Valentin and Toppila-Salmi, Sanna and Tsiligianni, Ioanna and Valiulis, Arunas and Valovirta, Erkka and Ventura, Maria-Teresa and Walker, Samantha and Williams, Sian and Yorgancioglu, Arzu and Agache, Ioana and Akdis, Cezmi A. and Almeida, Rute and Ansotegui, Ignacio J. and Annesi-Maesano, Isabella and Arnavielhe, Sylvie and Basaga{\~n}a, Xavier and D. Bateman, Eric and B{\´e}dard, Annabelle and Bedolla-Barajas, Martin and Becker, Sven and Bennoor, Kazi S. and Benveniste, Samuel and Bergmann, Karl C. and Bewick, Michael and Bialek, Slawomir and E. Billo, Nils and Bindslev-Jensen, Carsten and Bjermer, Leif and Blain, Hubert and Bonini, Matteo and Bonniaud, Philippe and Bosse, Isabelle and Bouchard, Jacques and Boulet, Louis-Philippe and Bourret, Rodolphe and Boussery, Koen and Braido, Fluvio and Briedis, Vitalis and Briggs, Andrew and Brightling, Christopher E. and Brozek, Jan and Brusselle, Guy and Brussino, Luisa and Buhl, Roland and Buonaiuto, Roland and Calderon, Moises A. and Camargos, Paulo and Camuzat, Thierry and Caraballo, Luis and Carriazo, Ana-Maria and Carr, Warner and Cartier, Christine and Casale, Thomas and Cecchi, Lorenzo and Cepeda Sarabia, Alfonso M. and H. Chavannes, Niels and Chkhartishvili, Ekaterine and Chu, Derek K. and Cingi, Cemal and Correia de Sousa, Jaime and Costa, David J. and Courbis, Anne-Lise and Custovic, Adnan and Cvetkosvki, Biljana and D'Amato, Gennaro and da Silva, Jane and Dantas, Carina and Dokic, Dejan and Dauvilliers, Yves and De Feo, Giulia and De Vries, Govert and Devillier, Philippe and Di Capua, Stefania and Dray, Gerard and Dubakiene, Ruta and Durham, Stephen R. and Dykewicz, Mark and Ebisawa, Motohiro and Gaga, Mina and El-Gamal, Yehia and Heffler, Enrico and Emuzyte, Regina and Farrell, John and Fauquert, Jean-Luc and Fiocchi, Alessandro and Fink-Wagner, Antje and Fontaine, Jean-Fran{\c{c}}ois and Fuentes Perez, Jos{\´e} M. and Gemicioğlu, Bilun and Gamkrelidze, Amiran and Garcia-Aymerich, Judith and Gevaert, Philippe and Gomez, Ren{\´e} Maximiliano and Gonz{\´a}lez Diaz, Sandra and Gotua, Maia and Guldemond, Nick A. and Guzm{\´a}n, Maria-Antonieta and Hajjam, Jawad and Huerta Villalobos, Yunuen R. and Humbert, Marc and Iaccarino, Guido and Ierodiakonou, Despo and Iinuma, Tomohisa and Jassem, Ewa and Joos, Guy and Jung, Ki-Suck and Kaidashev, Igor and Kalayci, Omer and Kardas, Przemyslaw and Keil, Thomas and Khaitov, Musa and Khaltaev, Nikolai and Kleine-Tebbe, Jorg and Kouznetsov, Rostislav and Kowalski, Marek L. and Kritikos, Vicky and Kull, Inger and La Grutta, Stefania and Leonardini, Lisa and Ljungberg, Henrik and Lieberman, Philip and Lipworth, Brian and Lodrup Carlsen, Karin C. and Lopes-Pereira, Catarina and Loureiro, Claudia C. and Louis, Renaud and Mair, Alpana and Mahboub, Bassam and Makris, Micha{\"e}l and Malva, Joao and Manning, Patrick and Marshall, Gailen D. and Masjedi, Mohamed R. and Maspero, Jorge F. and Carreiro-Martins, Pedro and Makela, Mika and Mathieu-Dupas, Eve and Maurer, Marcus and De Manuel Keenoy, Esteban and Melo-Gomes, Elisabete and Meltzer, Eli O. and Menditto, Enrica and Mercier, Jacques and Micheli, Yann and Miculinic, Neven and Mihaltan, Florin and Milenkovic, Branislava and Mitsias, Dimitirios I. and Moda, Giuliana and Mogica-Martinez, Maria-Dolores and Mohammad, Yousser and Montefort, Steve and Monti, Ricardo and Morais-Almeida, Mario and M{\"o}sges, Ralph and M{\"u}nter, Lars and Muraro, Antonella and Murray, Ruth and Naclerio, Robert and Napoli, Luigi and Namazova-Baranova, Leyla and Neffen, Hugo and Nekam, Kristoff and Neou, Angelo and Nordlund, Bj{\"o}rn and Novellino, Ettore and Nyembue, Dieudonn{\´e} and O'Hehir, Robyn and Ohta, Ken and Okubo, Kimi and Onorato, Gabrielle L. and Orlando, Valentina and Ouedraogo, Solange and Palamarchuk, Julia and Pali-Sch{\"o}ll, Isabella and Panzner, Peter and Park, Hae-Sim and Passalacqua, Gianni and P{\´e}pin, Jean-Louis and Paulino, Ema and Pawankar, Ruby and Phillips, Jim and Picard, Robert and Pinnock, Hilary and Plavec, Davor and Popov, Todor A. and Portejoie, Fabienne and Price, David and Prokopakis, Emmanuel P. and Psarros, Fotis and Pugin, Benoit and Puggioni, Francesca and Quinones-Delgado, Pablo and Raciborski, Filip and Rajabian-S{\"o}derlund, Rojin and Regateiro, Frederico S. and Reitsma, Sietze and Rivero-Yeverino, Daniela and Roberts, Graham and Roche, Nicolas and Rodriguez-Zagal, Erendira and Rolland, Christine and Roller-Wirnsberger, Regina E. and Rosario, Nelson and Romano, Antonino and Rottem, Menachem and Ryan, Dermot and Salim{\"a}ki, Johanna and Sanchez-Borges, Mario M. and Sastre, Joaquin and Scadding, Glenis K. and Scheire, Sophie and Schmid-Grendelmeier, Peter and Sch{\"u}nemann, Holger J. and Sarquis Serpa, Faradiba and Shamji, Mohamed and Sisul, Juan-Carlos and Sofiev, Mikhail and Sol{\´e}, Dirceu and Somekh, David and Sooronbaev, Talant and Sova, Milan and Spertini, Fran{\c{c}}ois and Spranger, Otto and Stellato, Cristiana and Stelmach, Rafael and Thibaudon, Michel and To, Teresa and Toumi, Mondher and Usmani, Omar and Valero, Antonio A. and Valenta, Rudolph and Valentin-Rostan, Marylin and Pereira, Marilyn Urrutia and van der Kleij, Rianne and Van Eerd, Michiel and Vandenplas, Olivier and Vasankari, Tuula and Vaz Carneiro, Antonio and Vezzani, Giorgio and Viart, Fr{\´e}d{\´e}ric and Viegi, Giovanni and Wallace, Dana and Wagenmann, Martin and Wang, De Yun and Waserman, Susan and Wickman, Magnus and Williams, Dennis M. and Wong, Gary and Wroczynski, Piotr and Yiallouros, Panayiotis K. and Yusuf, Osman M. and Zar, Heather J. and Zeng, St{\´e}phane and Zernotti, Mario E. and Zhang, Luo and Shan Zhong, Nan and Zidarn, Mihaela}, title = {ARIA digital anamorphosis: Digital transformation of health and care in airway diseases from research to practice}, series = {Allergy}, volume = {76}, journal = {Allergy}, number = {1}, doi = {10.1111/all.14422}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228339}, pages = {168 -- 190}, year = {2021}, abstract = {Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.}, language = {en} }