@article{RienschSwobodaLiketal.2021, author = {Riensch, Nicolas Alexander and Swoboda, Lukas and Lik, Artur and Krummenacher, Ivo and Braunschweig, Holger and Helten, Holger}, title = {Conjugated Bis(triarylboranes) with Disconnected Conjugation}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, volume = {647}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, number = {5}, doi = {10.1002/zaac.202000476}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258020}, pages = {421-424}, year = {2021}, abstract = {A series of methylene-bridged bis(triarylboranes) has been synthesized via two complementary routes using metal-free catalytic Si/B exchange condensation under mild conditions. The title compounds comprise two borane moieties that show effective internal π-conjugation involving the respective boron centers and the adjacent hetaryl groups. Conjugation between both borane units, however, is disrupted by the aliphatic linker. Cyclic voltammetry revealed minimal electronic communication between the boron centers, as evidenced by two closely spaced reduction processes. The UV-vis spectra showed bathochromic shifted absorption bands compared to related monoboranes, which is attributed to the methylene bridge. A further red-shift results upon introduction of methyl or SiMe\(_3\) groups at the terminal thiophene rings.}, language = {en} } @article{BachmannHelbigCrumbachetal.2022, author = {Bachmann, Jonas and Helbig, Andreas and Crumbach, Merian and Krummenacher, Ivo and Braunschweig, Holger and Helten, Holger}, title = {Fusion of Aza- and Oxadiborepins with Furans in a Reversible Ring-Opening Process Furnishes Versatile Building Blocks for Extended π-Conjugated Materials}, series = {Chemistry - A European Journal}, volume = {28}, journal = {Chemistry - A European Journal}, number = {63}, doi = {10.1002/chem.202202455}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293926}, year = {2022}, abstract = {A modular synthesis of both difurooxa- and difuroazadiborepins from a common precursor is demonstrated. Starting from 2,2′-bifuran, after protection of the positions 5 and 5' with bulky silyl groups, formation of the novel polycycles proceeds through opening of the furan rings to a dialkyne and subsequent re-cyclization in the borylation step. The resulting bifuran-fused diborepins show pronounced stability, highly planar tricyclic structures, and intense blue light emission. Deprotection and transformation into dibrominated building blocks that can be incorporated into π-extended materials can be performed in one step. Detailed DFT calculations provide information about the aromaticity of the constituent rings of this polycycle.}, language = {en} } @article{CrumbachBachmannFritzeetal.2021, author = {Crumbach, Merian and Bachmann, Jonas and Fritze, Lars and Helbig, Andreas and Krummenacher, Ivo and Braunschweig, Holger and Helten, Holger}, title = {Dithiophene-Fused Oxadiborepins and Azadiborepins: A New Class of Highly Fluorescent Heteroaromatics}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {17}, doi = {10.1002/anie.202100295}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238996}, pages = {9290 -- 9295}, year = {2021}, abstract = {Access to dithiophene-fused oxadiborepins and the first azadiborepins attained via a modular synthesis route are presented. The new compounds emit intense blue light, some of which demonstrate fluorescence quantum yields close to unity. Cyclic voltammetry (CV) revealed electrochemically reversible one-electron reduction processes. The weak aromatic character of the novel 1,2,7-azadiborepin ring is demonstrated with in-depth theoretical investigations using nucleus-independent chemical shift (NICS) scans and anisotropy of the induced current density (ACID) calculations.}, language = {en} } @article{SchorrSchopperRienschetal.2021, author = {Schorr, Fabian and Schopper, Nils and Riensch, Nicolas and Fantuzzi, Felipe and Neder, Marco and Dewhurst, Rian D. and Thiess, Thorsten and Br{\"u}ckner, Tobias and Hammond, Kai and Helten, Holger and Finze, Maik and Braunschweig, Holger}, title = {Controlled Synthesis of Oligomers Containing Main-Chain B(sp\(^{2}\))-B(sp\(^{2}\)) Bonds}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {64}, doi = {10.1002/chem.202103366}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257274}, pages = {16043-16048}, year = {2021}, abstract = {A number of novel alkynyl-functionalized diarylbis(dimethylamino)diboranes(4) are prepared by salt metathesis, and the appended alkynyl groups are subjected to hydroboration. Their reactions with monohydroboranes lead to discrete boryl-appended diborane(4) species, while dihydroboranes induce their catenation to oligomeric species, the first known examples of well-characterized macromolecular species with B-B bonds. The oligomeric species were found to comprise up to ten repeat units and are soluble in common organic solvents. Some of the oligomeric species have good air stability and all were characterized by NMR and vibrational spectroscopy and size-exclusion chromatography techniques.}, language = {en} } @article{AuerhammerArrowsmithBraunschweigetal.2017, author = {Auerhammer, Dominic and Arrowsmith, Merle and Braunschweig, Holger and Dewhurst, Rian D. and Jim{\´e}nez-Halla, J. Oscar C. and Kupfer, Thomas}, title = {Nucleophilic addition and substitution at coordinatively saturated boron by facile 1,2-hydrogen shuttling onto a carbene donor}, series = {Chemical Science}, volume = {8}, journal = {Chemical Science}, number = {10}, doi = {10.1039/c7sc03193a}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170255}, pages = {7066-7071}, year = {2017}, abstract = {The reaction of [(cAAC\(^{Me}\))BH\(_{3}\)] (cAAC\(^{Me}\) = 1-(2,6-iPr\(_{2}\)C\(_{6}\)H\(_{3}\))-3,3,5,5-tetramethylpyrrolidin-2-ylidene) with a range of organolithium compounds led to the exclusive formation of the corresponding (dihydro)organoborates, Li\(^{+}\)[(cAAC\(^{Me}\)H)BH\(_{2}\)R]- (R = sp\(^{3}\)-, sp\(^{2}\)-, or sp-hybridised organic substituent), by migration of one boron-bound hydrogen atom to the adjacent carbene carbon of the cAAC ligand. A subsequent deprotonation/salt metathesis reaction with Me3SiCl or spontaneous LiH elimination yielded the neutral cAAC-supported mono(organo)boranes, [(cAAC\(^{Me}\)H)BH\(_{2}\)R]- (R]. Similarly the reaction of [cAAC\(^{Me}\))BH\(_{3}\)] with a neutral donor base L resulted in adduct formation by shuttling one boron-bound hydrogen to the cAAC ligand, to generate [(cAAC\(^{Me}\)H)BH\(_{2}\)L], either irreversibly (L = cAAC\(^{Me}\)) or reversibly (L = pyridine). Variable-temperature NMR data and DFT calculations on [(cAAC\(^{Me}\)H)BH\(_{2}\)(cAAC\(^{Me}\))] show that the hydrogen on the former carbene carbon atom exchanges rapidly with the boron-bound hydrides.}, language = {en} } @article{BoehnkeBruecknerHermannetal.2018, author = {B{\"o}hnke, Julian and Br{\"u}ckner, Tobias and Hermann, Alexander and Gonz{\´a}lez-Belman, Oscar F. and Arrowsmith, Merle and Jim{\´e}nez-Halla, J. Oscar C. and Braunschweig, Holger}, title = {Single and double activation of acetone by isolobal B≡N and B≡B triple bonds}, series = {Chemical Science}, volume = {9}, journal = {Chemical Science}, doi = {10.1039/c8sc01249k}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164286}, pages = {5354-5359}, year = {2018}, abstract = {B≡N and B≡B triple bonds induce C-H activation of acetone to yield a (2-propenyloxy)aminoborane and an unsymmetrical 1-(2- propenyloxy)-2-hydrodiborene, respectively. DFT calculations showed that, despite their stark electronic differences, both the B≡N and B≡B triple bonds activate acetone via a similar coordination-deprotonation mechansim. In contrast, the reaction of acetone with a cAAC-supported diboracumulene yielded a unique 1,2,3-oxadiborole, which according to DFT calculations also proceeds via an unsymmetrical diborene, followed by intramolecular hydride migration and a second C-H activation of the enolate ligand.}, language = {en} } @article{BruecknerDewhurstDellermannetal.2019, author = {Br{\"u}ckner, Tobias and Dewhurst, Rian D. and Dellermann, Theresa and M{\"u}ller, Marcel and Braunschweig, Holger}, title = {Mild synthesis of diboryldiborenes by diboration of B-B triple bonds}, series = {Chemical Science}, volume = {10}, journal = {Chemical Science}, doi = {10.1039/C9SC02544H}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186306}, pages = {7375-7378}, year = {2019}, abstract = {A set of diboryldiborenes are prepared by the mild, catalyst-free, room-temperature diboration of the B-B triple bonds of doubly base-stabilized diborynes. Two of the product diboryldiborenes are found to be air- and water-stable in the solid state, an effect that is attributed to their high crystallinity and extreme insolubility in a wide range of solvents.}, language = {en} } @article{AnsellKostakisBraunschweigetal.2016, author = {Ansell, Melvyn B. and Kostakis, George E. and Braunschweig, Holger and Navarro, Oscar and Spencer, John}, title = {Synthesis of functionalized hydrazines: facile homogeneous (N-heterocyclic carbene)-palladium(0)-catalyzed diboration and silaboration of azobenzenes}, series = {Advanced Synthesis \& Catalysis}, volume = {358}, journal = {Advanced Synthesis \& Catalysis}, number = {23}, doi = {10.1002/adsc.201601106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186582}, pages = {3765-3769}, year = {2016}, abstract = {The bis(N-heterocyclic carbene)(diphenylacetylene)palladium complex Pd(ITMe)\(_2\)(PhCCPh)] (ITMe=1,3,4,5-tetramethylimidazol-2-ylidene) acts as a highly active pre-catalyst in the diboration and silaboration of azobenzenes to synthesize a series of novel functionalized hydrazines. The reactions proceed using commercially available diboranes and silaboranes under mild reaction conditions.}, language = {en} } @article{BraunschweigEwingGhoshetal.2016, author = {Braunschweig, Holger and Ewing, William C. and Ghosh, Sundargopal and Kramer, Thomas and Mattock, James D. and {\"O}streicher, Sebastian and Vargas, Alfredo and Werner, Christine}, title = {Trimetallaborides as starting points for the syntheses of large metal-rich molecular borides and clusters}, series = {Chemical Science}, volume = {7}, journal = {Chemical Science}, number = {1}, doi = {10.1039/c5sc03206g}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191511}, pages = {109-116}, year = {2016}, abstract = {Treatment of an anionic dimanganaborylene complex ([{Cp(CO)\(_2\)Mn}\(_2\)B]\(^-\)) with coinage metal cations stabilized by a very weakly coordinating Lewis base (SMe\(_2\)) led to the coordination of the incoming metal and subsequent displacement of dimethylsulfide in the formation of hexametalladiborides featuring planar four-membered M\(_2\)B\(_2\) cores (M = Cu, Au) comparable to transition metal clusters constructed around four-membered rings composed solely of coinage metals. The analogies between compounds consisting of B\(_2\)M\(_2\) units and M\(_4\) (M = Cu, Au) units speak to the often overlooked metalloid nature of boron. Treatment of one of these compounds (M = Cu) with a Lewis-basic metal fragment (Pt(PCy\(_3\))\(_2\)) led to the formation of a tetrametallaboride featuring two manganese, one copper and one platinum atom, all bound to boron in a geometry not yet seen for this kind of compound. Computational examination suggests that this geometry is the result of d\(^{10}\)-d\(^{10}\) dispersion interactions between the copper and platinum fragments.}, language = {en} } @article{BraunschweigKrummenacherMailaenderetal.2016, author = {Braunschweig, Holger and Krummenacher, Ivo and Mail{\"a}nder, Lisa and Pentecost, Leanne and Vargas, Alfredo}, title = {Formation of a stable radical by oxidation of a tetraorganoborate}, series = {Chemical Communications}, volume = {52}, journal = {Chemical Communications}, number = {43}, doi = {10.1039/c6cc02916g}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191321}, pages = {7005-7008}, year = {2016}, abstract = {Herein, we describe the selective formation of a stable neutral spiroborate radical by one-electron oxidation of the corresponding tetraorganoborate salt Li[B(C\(_4\)Ph\(_4\))\(_2\)], formally containing a tetrahedral borate centre and a s-cis-butadiene radical cation as the spin-bearing site. Spectroscopic and computational methods have been used to determine the spin distribution and the chromism observed in the solid state.}, language = {en} }