@article{MuessigLisinetskayaDewhurstetal.2020, author = {Muessig, Jonas H. and Lisinetskaya, Polina and Dewhurst, Rian D. and Bertermann, R{\"u}diger and Thaler, Melanie and Mitric, Roland and Braunschweig, Holger}, title = {Tetraiododiborane(4) (B\(_2\)I\(_4\)) is a Polymer based on sp\(^3\) Boron in the Solid State}, series = {Angewandte Chemie International Edition}, volume = {59}, journal = {Angewandte Chemie International Edition}, doi = {10.1002/anie.201913590}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-209428}, pages = {5531-5535}, year = {2020}, abstract = {Herein we present the first solid-state structures of tetraiododiborane(4) (B\(_2\)I\(_4\)), which was long believed to exist in all phases as discrete molecules with planar, tricoordinate boron atoms, like the lighter tetrahalodiboranes(4) B\(_2\)F\(_4\), B\(_2\)Cl\(_4\), and B\(_2\)Br\(_4\). Single-crystal X-ray diffraction, solid-state NMR, and IR measurements indicate that B\(_2\)I\(_4\) in fact exists as two different polymeric forms in the solid state, both of which feature boron atoms in tetrahedral environments. DFT calculations are used to simulate the IR spectra of the solution and solid-state structures, and these are compared with the experimental spectra.}, language = {en} } @article{RamlerFantuzziGeistetal.2021, author = {Ramler, Jaqueline and Fantuzzi, Felipe and Geist, Felix and Hanft, Anna and Braunschweig, Holger and Engels, Bernd and Lichtenberg, Crispin}, title = {The dimethylbismuth cation: entry into dative Bi-Bi bonding and unconventional methyl exchange}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, doi = {10.1002/anie.202109545}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256543}, pages = {24388-24394}, year = {2021}, abstract = {The dimethyl bismuth cation, [BiMe\(_2\)(SbF\(_6\))], has been isolated and characterized. Reaction with BiMe\(_3\) allows access to the first compound featuring Bi→Bi donor-acceptor bonding. In solution, dynamic behavior with methyl exchange via an unusual S\(_E\)2 mechanism is observed, underlining the unique properties of bismuth species as soft Lewis acids with the ability to undergo reversible Bi-C bond cleavage.}, language = {en} } @article{LenczykRoyOberdorfetal.2019, author = {Lenczyk, Carsten and Roy, Dipak Kumar and Oberdorf, Kai and Nitsch, J{\"o}rn and Dewhurst, Rian D. and Radacki, Krzysztof and Halet, Jean-Fran{\c{c}}ois and Marder, Todd B. and Bickelhaupt, Matthias and Braunschweig, Holger}, title = {Toward Transition-Metal-Templated Construction of Arylated B\(_{4}\) Chains by Dihydroborane Dehydrocoupling}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {72}, doi = {10.1002/chem.201904772}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214324}, pages = {16544-16549}, year = {2019}, abstract = {The reactivity of a diruthenium tetrahydride complex towards three selected dihydroboranes was investigated. The use of [DurBH\(_{2}\)] (Dur=2,3,5,6-Me\(_{4}\)C\(_{6}\)H) and [(Me\(_{3}\)Si)\(_{2}\)NBH\(_{2}\)] led to the formation of bridging borylene complexes of the form [(Cp\(^{*}\)RuH)\(_{2}\)BR] (Cp\(^{*}\)=C\(_{5}\)Me\(_{5}\); 1 a: R=Dur; 1 b: R=N(SiMe\(_{3}\))\(_{2}\)) through oxidative addition of the B-H bonds with concomitant hydrogen liberation. Employing the more electron-deficient dihydroborane [3,5-(CF\(_{3}\))\(_{2}\)-C\(_{6}\)H\(_{3}\)BH\(_{2}\)] led to the formation of an anionic complex bearing a tetraarylated chain of four boron atoms, namely Li(THF)\(_{4}\)[(Cp\(^{*}\)Ru)\(_{2}\)B\(_{4}\)H\(_{5}\)(3,5-(CF\(_{3}\))\(_{2}\)C\(_{6}\)H\(_{3}\))\(_{4}\)] (4), through an unusual, incomplete threefold dehydrocoupling process. A comparative theoretical investigation of the bonding in a simplified model of 4 and the analogous complex nido-[1,2(Cp\(^{*}\)Ru)\(_{2}\)(μ-H)B\(_{4}\)H\(_{9}\)] (I) indicates that there appear to be no classical σ-bonds between the boron atoms in complex I, whereas in the case of 4 the B\(_{4}\) chain better resembles a network of three B-B σ bonds, the central bond being significantly weaker than the other two.}, language = {en} } @article{SchmidtWernerArrowsmithetal.2020, author = {Schmidt, Uwe and Werner, Luis and Arrowsmith, Merle and Deissenberger, Andrea and Hermann, Alexander and Hofmann, Alexander and Ullrich, Stefan and Mattock, James D. and Vargas, Alfredo and Braunschweig, Holger}, title = {trans-Selective Insertional Dihydroboration of a cis-Diborene: Synthesis of Linear sp\(^3\)-sp\(^2\)-sp\(^3\)-Triboranes and Subsequent Cationization}, series = {Angewandte Chemie International Edition}, volume = {59}, journal = {Angewandte Chemie International Edition}, number = {1}, doi = {10.1002/anie.201911645}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208090}, pages = {325-329}, year = {2020}, abstract = {The reaction of aryl- and amino(dihydro)boranes with dibora[2]ferrocenophane 1 leads to the formation 1,3-trans -dihydrotriboranes by formal hydrogenation and insertion of a borylene unit into the B=B bond. The aryltriborane derivatives undergo reversible photoisomerization to the cis -1,2-μ-H-3-hydrotriboranes, while hydride abstraction affords cationic triboranes, which represent the first doubly base-stabilized B3H4\(^+\) analogues.}, language = {en} } @article{SchmidtWernerArrowsmithetal.2020, author = {Schmidt, Uwe and Werner, Luis and Arrowsmith, Merle and Deissenberger, Andrea and Hermann, Alexander and Hofmann, Alexander and Ullrich, Stefan and Mattock, James D. and Vargas, Alfredo and Braunschweig, Holger}, title = {Trans-selektive Dihydroborierung eines cis-Diborens durch Insertion: Synthese eines linearen sp\(^3\)-sp\(^2\)-sp\(^3\)-Triborans und anschließende Kationisierung}, series = {Angewandte Chemie}, volume = {132}, journal = {Angewandte Chemie}, number = {1}, doi = {10.1002/ange.201911645}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219713}, pages = {333-337}, year = {2020}, abstract = {Die Reaktion zwischen Aryl- und Amino(dihydro)boranen und Dibora[2]ferrocenophan 1 f{\"u}hrt zur Bildung von 1,3-trans-Dihydrotriboranen durch formale Hydrierung und Insertion eines Borylens in die B=B Doppelbindung. Die Aryltriboran-Derivate unterliegen einer reversiblen Photoisomerisierung zugunsten eines cis-1,2-μ-H-3-Hydrotriborans, w{\"a}hrend eine Hydridabstraktion zu kationischen Triboranen f{\"u}hrt, welche die ersten doppelt basenstabilisierten B\(_3\)H\(_4\)\(^+\)-Analoga darstellen.}, language = {de} } @unpublished{HermannArrowsmithTrujilloGonzalezetal.2020, author = {Hermann, Alexander and Arrowsmith, Merle and Trujillo-Gonzalez, Daniel and Jim{\´e}nez-Halla, J. Oscar C. and Vargas, Alfredo and Braunschweig, Holger}, title = {Trapping of a Borirane Intermediate in the Reductive Coupling of an Arylborane to a Diborene}, series = {Journal of the American Chemical Society}, journal = {Journal of the American Chemical Society}, doi = {10.1021/jacs.0c02306}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203140}, year = {2020}, abstract = {The reductive coupling of an NHC-stabilized aryldibromoborane yields a mixture of trans- and cis-diborenes in which the aryl groups are coplanar with the diborene core. Under dilute reduction conditions two diastereomers of a borirane-borane intermediate are isolated, which upon further reduction give rise to the aforementioned diborene mixture. DFT calculations suggest a mechanism proceeding via nucleophilic attack of a dicoordinate borylene intermediate on the aryl ring and subsequent intramolecular B-B bond formation.}, language = {en} } @article{BraunschweigEwingGhoshetal.2016, author = {Braunschweig, Holger and Ewing, William C. and Ghosh, Sundargopal and Kramer, Thomas and Mattock, James D. and {\"O}streicher, Sebastian and Vargas, Alfredo and Werner, Christine}, title = {Trimetallaborides as starting points for the syntheses of large metal-rich molecular borides and clusters}, series = {Chemical Science}, volume = {7}, journal = {Chemical Science}, number = {1}, doi = {10.1039/c5sc03206g}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191511}, pages = {109-116}, year = {2016}, abstract = {Treatment of an anionic dimanganaborylene complex ([{Cp(CO)\(_2\)Mn}\(_2\)B]\(^-\)) with coinage metal cations stabilized by a very weakly coordinating Lewis base (SMe\(_2\)) led to the coordination of the incoming metal and subsequent displacement of dimethylsulfide in the formation of hexametalladiborides featuring planar four-membered M\(_2\)B\(_2\) cores (M = Cu, Au) comparable to transition metal clusters constructed around four-membered rings composed solely of coinage metals. The analogies between compounds consisting of B\(_2\)M\(_2\) units and M\(_4\) (M = Cu, Au) units speak to the often overlooked metalloid nature of boron. Treatment of one of these compounds (M = Cu) with a Lewis-basic metal fragment (Pt(PCy\(_3\))\(_2\)) led to the formation of a tetrametallaboride featuring two manganese, one copper and one platinum atom, all bound to boron in a geometry not yet seen for this kind of compound. Computational examination suggests that this geometry is the result of d\(^{10}\)-d\(^{10}\) dispersion interactions between the copper and platinum fragments.}, language = {en} } @unpublished{SchmidtFantuzziArrowsmithetal.2020, author = {Schmidt, Uwe and Fantuzzi, Felipe and Arrowsmith, Merle and Hermann, Alexander and Prieschl, Dominic and Rempel, Anna and Engels, Bernd and Braunschweig, Holger}, title = {Tuneable reduction of cymantrenylboranes to diborenes or borylene-derived boratafulvenes}, series = {Chemical Communications}, journal = {Chemical Communications}, doi = {10.1039/D0CC06398C}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222149}, year = {2020}, abstract = {Whereas the reduction of N-heterocyclic carbene (NHC)-stabilised cymantrenyldibromoboranes, (NHC)BBr\(_2\)Cym, in benzene results in formation of the corresponding diborenes (NHC)\(_2\)B\(_2\)Cym\(_2\), a change of solvent to THF yields a borylene of the form (NHC)\(_2\)BCym, stabilised through its boratafulvene resonance form.}, language = {en} } @article{SchmidtFantuzziKlopfetal.2021, author = {Schmidt, Paul and Fantuzzi, Felipe and Klopf, Jonas and Schr{\"o}der, Niklas B. and Dewhurst, Rian D. and Braunschweig, Holger and Engel, Volker and Engels, Bernd}, title = {Twisting versus delocalization in CAAC- and NHC-stabilized boron-based biradicals: the roles of sterics and electronics}, series = {Chemistry - A European Journal}, volume = {27}, journal = {Chemistry - A European Journal}, number = {16}, doi = {10.1002/chem.202004619}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256636}, pages = {5160-5170}, year = {2021}, abstract = {Twisted boron-based biradicals featuring unsaturated C\(_2\)R\(_2\) (R=Et, Me) bridges and stabilization by cyclic (alkyl)(amino)carbenes (CAACs) were recently prepared. These species show remarkable geometrical and electronic differences with respect to their unbridged counterparts. Herein, a thorough computational investigation on the origin of their distinct electrostructural properties is performed. It is shown that steric effects are mostly responsible for the preference for twisted over planar structures. The ground-state multiplicity of the twisted structure is modulated by the σ framework of the bridge, and different R groups lead to distinct multiplicities. In line with the experimental data, a planar structure driven by delocalization effects is observed as global minimum for R=H. The synthetic elusiveness of C\(_2\)R\(_2\)-bridged systems featuring N-heterocyclic carbenes (NHCs) was also investigated. These results could contribute to the engineering of novel main group biradicals.}, language = {en} } @article{ArrowsmithBoehnkeBraunschweigetal.2016, author = {Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Celik, Mehmet and Dellermann, Theresa and Hammond, Kai}, title = {Uncatalyzed Hydrogenation of First-Row Main Group Multiple Bonds}, series = {Chemistry, A European Journal}, volume = {22}, journal = {Chemistry, A European Journal}, number = {48}, doi = {10.1002/chem.201604094}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139364}, pages = {17169 -- 17172}, year = {2016}, abstract = {Room temperature hydrogenation of an SIDep-stabilized diboryne (SIDep = 1,3-bis(diethylphenyl)-4,5-dihydroimidazol-2-ylidene) and a CAAC-supported diboracumulene (CAAC = 1-(2,6- diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) provided the first selective route to the corresponding 1,2-dihydrodiborenes. DFT calculations showed an overall exothermic (ΔG = 19.4 kcal mol\(^{-1}\) two-step asynchronous H\(_2\) addition mechanism proceeding via a bridging hydride.}, subject = {Diborane}, language = {en} }