@article{IyengarSedorFreedmanetal.2015, author = {Iyengar, Sudha K. and Sedor, John R. and Freedman, Barry I. and Kao, W. H. Linda and Kretzler, Matthias and Keller, Benjamin J. and Abboud, Hanna E. and Adler, Sharon G. and Best, Lyle G. and Bowden, Donald W. and Burlock, Allison and Chen, Yii-Der Ida and Cole, Shelley A. and Comeau, Mary E. and Curtis, Jeffrey M. and Divers, Jasmin and Drechsler, Christiane and Duggirala, Ravi and Elston, Robert C. and Guo, Xiuqing and Huang, Huateng and Hoffmann, Michael Marcus and Howard, Barbara V. and Ipp, Eli and Kimmel, Paul L. and Klag, Michael J. and Knowler, William C. and Kohn, Orly F. and Leak, Tennille S. and Leehey, David J. and Li, Man and Malhotra, Alka and M{\"a}rz, Winfried and Nair, Viji and Nelson, Robert G. and Nicholas, Susanne B. and O'Brien, Stephen J. and Pahl, Madeleine V. and Parekh, Rulan S. and Pezzolesi, Marcus G. and Rasooly, Rebekah S. and Rotimi, Charles N. and Rotter, Jerome I. and Schelling, Jeffrey R. and Seldin, Michael F. and Shah, Vallabh O. and Smiles, Adam M. and Smith, Michael W. and Taylor, Kent D. and Thameem, Farook and Thornley-Brown, Denyse P. and Truitt, Barbara J. and Wanner, Christoph and Weil, E. Jennifer and Winkler, Cheryl A. and Zager, Philip G. and Igo, Jr, Robert P. and Hanson, Robert L. and Langefeld, Carl D.}, title = {Genome-wide association and trans-ethnic meta-analysis for advanced diabetic kidney disease: Family Investigation of Nephropathy and Diabetes (FIND)}, series = {PLoS Genetics}, volume = {11}, journal = {PLoS Genetics}, number = {8}, doi = {10.1371/journal.pgen.1005352}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180545}, pages = {e1005352}, year = {2015}, abstract = {Diabetic kidney disease (DKD) is the most common etiology of chronic kidney disease (CKD) in the industrialized world and accounts for much of the excess mortality in patients with diabetes mellitus. Approximately 45\% of U.S. patients with incident end-stage kidney disease (ESKD) have DKD. Independent of glycemic control, DKD aggregates in families and has higher incidence rates in African, Mexican, and American Indian ancestral groups relative to European populations. The Family Investigation of Nephropathy and Diabetes (FIND) performed a genome-wide association study (GWAS) contrasting 6,197 unrelated individuals with advanced DKD with healthy and diabetic individuals lacking nephropathy of European American, African American, Mexican American, or American Indian ancestry. A large-scale replication and trans-ethnic meta-analysis included 7,539 additional European American, African American and American Indian DKD cases and non-nephropathy controls. Within ethnic group meta-analysis of discovery GWAS and replication set results identified genome-wide significant evidence for association between DKD and rs12523822 on chromosome 6q25.2 in American Indians (P = 5.74x10\(^{-9}\)). The strongest signal of association in the trans-ethnic meta-analysis was with a SNP in strong linkage disequilibrium with rs12523822 (rs955333; P = 1.31x10\(^{-8}\)), with directionally consistent results across ethnic groups. These 6q25.2 SNPs are located between the SCAF8 and CNKSR3 genes, a region with DKD relevant changes in gene expression and an eQTL with IPCEF1, a gene co-translated with CNKSR3. Several other SNPs demonstrated suggestive evidence of association with DKD, within and across populations. These data identify a novel DKD susceptibility locus with consistent directions of effect across diverse ancestral groups and provide insight into the genetic architecture of DKD.}, language = {en} } @article{RaynerColemanPurvesetal.2019, author = {Rayner, Christopher and Coleman, Jonathan R. I. and Purves, Kirstin L. and Hodsoll, John and Goldsmith, Kimberley and Alpers, Georg W. and Andersson, Evelyn and Arolt, Volker and Boberg, Julia and B{\"o}gels, Susan and Creswell, Cathy and Cooper, Peter and Curtis, Charles and Deckert, J{\"u}rgen and Domschke, Katharina and El Alaoui, Samir and Fehm, Lydia and Fydrich, Thomas and Gerlach, Alexander L. and Grocholewski, Anja and Hahlweg, Kurt and Hamm, Alfons and Hedman, Erik and Heiervang, Einar R. and Hudson, Jennifer L. and J{\"o}hren, Peter and Keers, Robert and Kircher, Tilo and Lang, Thomas and Lavebratt, Catharina and Lee, Sang-hyuck and Lester, Kathryn J. and Lindefors, Nils and Margraf, J{\"u}rgen and Nauta, Maaike and Pan{\´e}-Farr{\´e}, Christiane A. and Pauli, Paul and Rapee, Ronald M. and Reif, Andreas and Rief, Winfried and Roberts, Susanna and Schalling, Martin and Schneider, Silvia and Silverman, Wendy K. and Str{\"o}hle, Andreas and Teismann, Tobias and Thastum, Mikael and Wannem{\"u}ller, Andre and Weber, Heike and Wittchen, Hans-Ulrich and Wolf, Christiane and R{\"u}ck, Christian and Breen, Gerome and Eley, Thalia C.}, title = {A genome-wide association meta-analysis of prognostic outcomes following cognitive behavioural therapy in individuals with anxiety and depressive disorders}, series = {Translational Psychiatry}, volume = {9}, journal = {Translational Psychiatry}, number = {150}, doi = {10.1038/s41398-019-0481-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225048}, pages = {1-13}, year = {2019}, abstract = {Major depressive disorder and the anxiety disorders are highly prevalent, disabling and moderately heritable. Depression and anxiety are also highly comorbid and have a strong genetic correlation (r(g) approximate to 1). Cognitive behavioural therapy is a leading evidence-based treatment but has variable outcomes. Currently, there are no strong predictors of outcome. Therapygenetics research aims to identify genetic predictors of prognosis following therapy. We performed genome-wide association meta-analyses of symptoms following cognitive behavioural therapy in adults with anxiety disorders (n = 972), adults with major depressive disorder (n = 832) and children with anxiety disorders (n = 920; meta-analysis n = 2724). We (h(SNP)(2)) and polygenic scoring was used to examine genetic associations between therapy outcomes and psychopathology, personality and estimated the variance in therapy outcomes that could be explained by common genetic variants learning. No single nucleotide polymorphisms were strongly associated with treatment outcomes. No significant estimate of h(SNP)(2) could be obtained, suggesting the heritability of therapy outcome is smaller than our analysis was powered to detect. Polygenic scoring failed to detect genetic overlap between therapy outcome and psychopathology, personality or learning. This study is the largest therapygenetics study to date. Results are consistent with previous, similarly powered genome-wide association studies of complex traits.}, language = {en} } @article{deJongDinizSalomaetal.2018, author = {de Jong, Simone and Diniz, Mateus Jose Abdalla and Saloma, Andiara and Gadelha, Ary and Santoro, Marcos L. and Ota, Vanessa K. and Noto, Cristiano and Curtis, Charles and Newhouse, Stephen J. and Patel, Hamel and Hall, Lynsey S. and O'Reilly, Paul F. and Belangero, Sintia I. and Bressan, Rodrigo A. and Breen, Gerome}, title = {Applying polygenic risk scoring for psychiatric disorders to a large family with bipolar disorder and major depressive disorder}, series = {Communications Biology}, volume = {1}, journal = {Communications Biology}, organization = {Major Depressive Disorder and Bipolar Disorder Working Groups of the Psychiatric Genomics Consortium}, doi = {10.1038/s42003-018-0155-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223622}, year = {2018}, abstract = {Psychiatric disorders are thought to have a complex genetic pathology consisting of interplay of common and rare variation. Traditionally, pedigrees are used to shed light on the latter only, while here we discuss the application of polygenic risk scores to also highlight patterns of common genetic risk. We analyze polygenic risk scores for psychiatric disorders in a large pedigree (n ~ 260) in which 30\% of family members suffer from major depressive disorder or bipolar disorder. Studying patterns of assortative mating and anticipation, it appears increased polygenic risk is contributed by affected individuals who married into the family, resulting in an increasing genetic risk over generations. This may explain the observation of anticipation in mood disorders, whereby onset is earlier and the severity increases over the generations of a family. Joint analyses of rare and common variation may be a powerful way to understand the familial genetics of psychiatric disorders.}, language = {en} }