@article{PimentelElardoBubackGulderetal.2011, author = {Pimentel-Elardo, Sheila M. and Buback, Verena and Gulder, Tobias A. M. and Bugni, Tim S. and Reppart, Jason and Bringmann, Gerhard and Ireland, Chris M. and Schirmeister, Tanja and Hentschel, Ute}, title = {New Tetromycin Derivatives with Anti-Trypanosomal and Protease Inhibitory Activities}, series = {Marine drugs}, volume = {9}, journal = {Marine drugs}, number = {10}, doi = {10.3390/md9101682}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141171}, pages = {1682-1697}, year = {2011}, abstract = {Four new tetromycin derivatives, tetromycins 1-4 and a previously known one, tetromycin B (5) were isolated from Streptomyces axinellae Pol001(T) cultivated from the Mediterranean sponge Axinella polypoides. Structures were assigned using extensive 1D and 2D NMR spectroscopy as well as HRESIMS analysis. The compounds were tested for antiparasitic activities against Leishmania major and Trypanosoma brucei, and for protease inhibition against several cysteine proteases such as falcipain, rhodesain, cathepsin L, cathepsin B, and viral proteases SARS-CoV M(pro), and PL(pro). The compounds showed antiparasitic activities against T. brucei and time-dependent inhibition of cathepsin L-like proteases with K(i) values in the low micromolar range.}, language = {en} } @article{PimentelElardoBubackGulderetal.2011, author = {Pimentel-Elardo, Sheila M. and Buback, Verena and Gulder, Tobias A. M. and Bugni, Tim S. and Reppart, Jason and Bringmann, Gerhard and Ireland, Chris M. and Schirmeister, Tanja and Hentschel, Ute}, title = {New Tetromycin Derivatives with Anti-Trypanosomal and Protease Inhibitory Activities}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75465}, year = {2011}, abstract = {Four new tetromycin derivatives, tetromycins 1-4 and a previously known one, tetromycin B (5) were isolated from Streptomyces axinellae Pol001T cultivated from the Mediterranean sponge Axinella polypoides. Structures were assigned using extensive 1D and 2D NMR spectroscopy as well as HRESIMS analysis. The compounds were tested for antiparasitic activities against Leishmania major and Trypanosoma brucei, and for protease inhibition against several cysteine proteases such as falcipain, rhodesain, cathepsin L, cathepsin B, and viral proteases SARS-CoV Mpro, and PLpro. The compounds showed antiparasitic activities against T. brucei and time-dependent inhibition of cathepsin L-like proteases with Ki values in the low micromolar range.}, subject = {Biologie}, language = {en} } @article{PimentelElardoKozytskaBugnietal.2010, author = {Pimentel-Elardo, Sheila Marie and Kozytska, Svitlana and Bugni, Tim S. and Ireland, Chris M. and Moll, Heidrun and Hentschel, Ute}, title = {Anti-Parasitic Compounds from Streptomyces sp. Strains Isolated from Mediterranean Sponges}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68312}, year = {2010}, abstract = {Actinomycetes are prolific producers of pharmacologically important compounds accounting for about 70\% of the naturally derived antibiotics that are currently in clinical use. In this study, we report on the isolation of Streptomyces sp. strains from Mediterranean sponges, on their secondary metabolite production and on their screening for anti-infective activities. Bioassay-guided isolation and purification yielded three previously known compounds namely, cyclic depsipeptide valinomycin, indolocarbazole alkaloid staurosporine and butenolide. This is the first report of the isolation of valinomycin from a marine source. These compounds exhibited novel anti-parasitic activities specifically against Leishmania major (valinomycin IC50 < 0.11 μM; staurosporine IC50 5.30 μM) and Trypanosoma brucei brucei (valinomycin IC50 0.0032 μM; staurosporine IC50 0.022 μM; butenolide IC50 31.77 μM). These results underscore the potential of marine actinomycetes to produce bioactive compounds as well as the re-evaluation of previously known compounds for novel anti-infective activities.}, subject = {Biologie}, language = {en} }