@article{WegenerChen2022, author = {Wegener, Christian and Chen, Jiangtian}, title = {Allatostatin A signalling: progress and new challenges from a paradigmatic pleiotropic invertebrate neuropeptide family}, series = {Frontiers in Physiology}, volume = {13}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2022.920529}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278749}, year = {2022}, abstract = {Neuropeptides have gained broad attraction in insect neuroscience and physiology, as new genetic tools are increasingly uncovering their wide-ranging pleiotropic functions with high cellular resolution. Allatostatin A (AstA) peptides constitute one of the best studied insect neuropeptide families. In insects and other panarthropods, AstA peptides qualify as brain-gut peptides and have regained attention with the discovery of their role in regulating feeding, growth, activity/sleep and learning. AstA receptor homologs are found throughout the protostomia and group with vertebrate somatostatin/galanin/kisspeptin receptors. In this review, we summarise the current knowledge on the evolution and the pleiotropic and cell-specific non-allatostatic functions of AstA. We speculate about the core functions of AstA signalling, and derive open questions and challengesfor future research on AstA and invertebrate neuropeptides in general.}, language = {en} } @article{SelchoMillanPalaciosMunozetal.2017, author = {Selcho, Mareike and Mill{\´a}n, Carola and Palacios-Mu{\~n}oz, Angelina and Ruf, Franziska and Ubillo, Lilian and Chen, Jiangtian and Bergmann, Gregor and Ito, Chihiro and Silva, Valeria and Wegener, Christian and Ewer, John}, title = {Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {15563}, doi = {10.1038/ncomms15563}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170831}, year = {2017}, abstract = {Animal circadian clocks consist of central and peripheral pacemakers, which are coordinated to produce daily rhythms in physiology and behaviour. Despite its importance for optimal performance and health, the mechanism of clock coordination is poorly understood. Here we dissect the pathway through which the circadian clock of Drosophila imposes daily rhythmicity to the pattern of adult emergence. Rhythmicity depends on the coupling between the brain clock and a peripheral clock in the prothoracic gland (PG), which produces the steroid hormone, ecdysone. Time information from the central clock is transmitted via the neuropeptide, sNPF, to non-clock neurons that produce the neuropeptide, PTTH. These secretory neurons then forward time information to the PG clock. We also show that the central clock exerts a dominant role on the peripheral clock. This use of two coupled clocks could serve as a paradigm to understand how daily steroid hormone rhythms are generated in animals.}, language = {en} } @article{MitchellLiWeinholdetal.2016, author = {Mitchell, Jonathan S. and Li, Ni and Weinhold, Niels and F{\"o}rsti, Asta and Ali, Mina and van Duin, Mark and Thorleifsson, Gudmar and Johnson, David C. and Chen, Bowang and Halvarsson, Britt-Marie and Gudbjartsson, Daniel F. and Kuiper, Rowan and Stephens, Owen W. and Bertsch, Uta and Broderick, Peter and Campo, Chiara and Einsele, Hermann and Gregory, Walter A. and Gullberg, Urban and Henrion, Marc and Hillengass, Jens and Hoffmann, Per and Jackson, Graham H. and Johnsson, Ellinor and J{\"o}ud, Magnus and Kristinsson, Sigurdur Y. and Lenhoff, Stig and Lenive, Oleg and Mellqvist, Ulf-Henrik and Migliorini, Gabriele and Nahi, Hareth and Nelander, Sven and Nickel, Jolanta and N{\"o}then, Markus M. and Rafnar, Thorunn and Ross, Fiona M. and da Silva Filho, Miguel Inacio and Swaminathan, Bhairavi and Thomsen, Hauke and Turesson, Ingemar and Vangsted, Annette and Vogel, Ulla and Waage, Anders and Walker, Brian A. and Wihlborg, Anna-Karin and Broyl, Annemiek and Davies, Faith E. and Thorsteinsdottir, Unnur and Langer, Christian and Hansson, Markus and Kaiser, Martin and Sonneveld, Pieter and Stefansson, Kari and Morgan, Gareth J. and Goldschmidt, Hartmut and Hemminki, Kari and Nilsson, Bj{\"o}rn and Houlston, Richard S.}, title = {Genome-wide association study identifies multiple susceptibility loci for multiple myeloma}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms12050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165983}, pages = {12050}, year = {2016}, abstract = {Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a new GWAS and perform replication analyses resulting in 9,866 cases and 239,188 controls. We confirm all nine known risk loci and discover eight new loci at 6p22.3 (rs34229995, P=1.31 × 10-8), 6q21 (rs9372120, P=9.09 × 10-15), 7q36.1 (rs7781265, P=9.71 × 10-9), 8q24.21 (rs1948915, P=4.20 × 10-11), 9p21.3 (rs2811710, P=1.72 × 10-13), 10p12.1 (rs2790457, P=1.77 × 10-8), 16q23.1 (rs7193541, P=5.00 × 10-12) and 20q13.13 (rs6066835, P=1.36 × 10-13), which localize in or near to JARID2, ATG5, SMARCD3, CCAT1, CDKN2A, WAC, RFWD3 and PREX1. These findings provide additional support for a polygenic model of MM and insight into the biological basis of tumour development.}, language = {en} } @article{GentzschHoffmannOhshimaetal.2021, author = {Gentzsch, Christian and Hoffmann, Matthias and Ohshima, Yasuhiro and Nose, Naoko and Chen, Xinyu and Higuchi, Takahiro and Decker, Michael}, title = {Synthesis and Initial Characterization of a Selective, Pseudo-irreversible Inhibitor of Human Butyrylcholinesterase as PET Tracer}, series = {ChemMedChem}, volume = {16}, journal = {ChemMedChem}, number = {9}, doi = {10.1002/cmdc.202000942}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239904}, pages = {1427 -- 1437}, year = {2021}, abstract = {The enzyme butyrylcholinesterase (BChE) represents a promising target for imaging probes to potentially enable early diagnosis of neurodegenerative diseases like Alzheimer's disease (AD) and to monitor disease progression in some forms of cancer. In this study, we present the design, facile synthesis, in vitro and preliminary ex vivo and in vivo evaluation of a morpholine-based, selective inhibitor of human BChE as a positron emission tomography (PET) tracer with a pseudo-irreversible binding mode. We demonstrate a novel protecting group strategy for 18F radiolabeling of carbamate precursors and show that the inhibitory potency as well as kinetic properties of our unlabeled reference compound were retained in comparison to the parent compound. In particular, the prolonged duration of enzyme inhibition of such a morpholinocarbamate motivated us to design a PET tracer, possibly enabling a precise mapping of BChE distribution.}, language = {en} } @article{GentzschChenSpatzetal.2021, author = {Gentzsch, Christian and Chen, Xinyu and Spatz, Philipp and Košak, Urban and Knez, Damijan and Nose, Naoko and Gobec, Stanislav and Higuchi, Takahiro and Decker, Michael}, title = {Synthesis and Initial Characterization of a Reversible, Selective \(^{18}\)F-Labeled Radiotracer for Human Butyrylcholinesterase}, series = {Molecular Imaging and Biology}, volume = {23}, journal = {Molecular Imaging and Biology}, number = {4}, issn = {1860-2002}, doi = {10.1007/s11307-021-01584-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269870}, pages = {505-515}, year = {2021}, abstract = {Purpose A neuropathological hallmark of Alzheimer's disease (AD) is the presence of amyloid-β (Aβ) plaques in the brain, which are observed in a significant number of cognitively normal, older adults as well. In AD, butyrylcholinesterase (BChE) becomes associated with A\(_{β}\) aggregates, making it a promising target for imaging probes to support diagnosis of AD. In this study, we present the synthesis, radiochemistry, in vitro and preliminary ex and in vivo investigations of a selective, reversible BChE inhibitor as PET-tracer for evaluation as an AD diagnostic. Procedures Radiolabeling of the inhibitor was achieved by fluorination of a respective tosylated precursor using K[\(^{18}\)F]. IC\(_{50}\) values of the fluorinated compound were obtained in a colorimetric assay using recombinant, human (h) BChE. Dissociation constants were determined by measuring hBChE activity in the presence of different concentrations of inhibitor. Results Radiofluorination of the tosylate precursor gave the desired radiotracer in an average radiochemical yield of 20 ± 3 \%. Identity and > 95.5 \% radiochemical purity were confirmed by HPLC and TLC autoradiography. The inhibitory potency determined in Ellman's assay gave an IC\(_{50}\) value of 118.3 ± 19.6 nM. Dissociation constants measured in kinetic experiments revealed lower affinity of the inhibitor for binding to the acylated enzyme (K2 = 68.0 nM) in comparison to the free enzyme (K\(_{1}\) = 32.9 nM). Conclusions The reversibly acting, selective radiotracer is synthetically easily accessible and retains promising activity and binding potential on hBChE. Radiosynthesis with \(^{18}\)F labeling of tosylates was feasible in a reasonable time frame and good radiochemical yield.}, language = {en} } @article{DimopoulosWeiselSongetal.2015, author = {Dimopoulos, Meletios A. and Weisel, Katja C. and Song, Kevin W. and Delforge, Michel and Karlin, Lionel and Goldschmidt, Hartmut and Moreau, Philippe and Banos, Anne and Oriol, Albert and Garderet, Laurent and Cavo, Michele and Ivanova, Valentina and Alegre, Adrian and Martinez-Lopez, Joaquin and Chen, Christine and Spencer, Andrew and Knop, Stefan and Bahlis, Nizar J. and Renner, Christoph and Yu, Xin and Hong, Kevin and Sternas, Lars and Jacques, Christian and Zaki, Mohamed H. and San Miguel, Jesus F.}, title = {Cytogenetics and long-term survival of patients with refractory or relapsed and refractory multiple myeloma treated with pomalidomide and low-dose dexamethasone}, series = {Haematologica}, volume = {100}, journal = {Haematologica}, number = {10}, doi = {10.3324/haematol.2014.117077}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140349}, pages = {1327 -- 1333}, year = {2015}, abstract = {Patients with refractory or relapsed and refractory multiple myeloma who no longer receive benefit from novel agents have limited treatment options and short expected survival. del(17p) and t(4;14) are correlated with shortened survival. The phase 3 MM-003 trial demonstrated significant progression-free and overall survival benefits from treatment with pomalidomide plus low-dose dexamethasone compared to high-dose dexamethasone among patients in whom bortezomib and lenalidomide treatment had failed. At an updated median follow-up of 15.4 months, the progression-free survival was 4.0 versus 1.9 months (HR, 0.50; P<0.001), and median overall survival was 13.1 versus 8.1 months (HR, 0.72; P=0.009). Pomalidomide plus low-dose dexamethasone, compared with high-dose dexamethasone, improved progression-free survival in patients with del(17p) (4.6 versus 1.1 months; HR, 0.34; P < 0.001), t(4;14) (2.8 versus 1.9 months; HR, 0.49; P=0.028), and in standard-risk patients (4.2 versus 2.3 months; HR, 0.55; P<0.001). Although the majority of patients treated with high-dose dexamethasone took pomalidomide after discontinuation, the overall survival of patients treated with pomalidomide plus low-dose dexamethasone or highdose dexamethasone was 12.6 versus 7.7 months (HR, 0.45; P=0.008) in patients with del(17p), 7.5 versus 4.9 months (HR, 1.12; P=0.761) in those with t(4;14), and 14.0 versus 9.0 months (HR, 0.85; P=0.380) in standard-risk subjects. The overall response rate was higher in patients treated with pomalidomide plus low-dose dexamethasone than in those treated with high-dose dexamethasone both among standard-risk patients (35.2\% versus 9.7\%) and those with del(17p) (31.8\% versus 4.3\%), whereas it was similar in patients with t(4; 14) (15.9\% versus 13.3\%). The safety of pomalidomide plus low-dose dexamethasone was consistent with initial reports. In conclusion, pomalidomide plus low-dose dexamethasone is efficacious in patients with relapsed/refractory multiple myeloma and del(17p) and/or t(4;14).}, language = {en} } @article{CouchWangMcGuffogetal.2013, author = {Couch, Fergus J. and Wang, Xianshu and McGuffog, Lesley and Lee, Andrew and Olswold, Curtis and Kuchenbaecker, Karoline B. and Soucy, Penny and Fredericksen, Zachary and Barrowdale, Daniel and Dennis, Joe and Gaudet, Mia M. and Dicks, Ed and Kosel, Matthew and Healey, Sue and Sinilnikova, Olga M. and Lee, Adam and Bacot, Fran{\c{c}}ios and Vincent, Daniel and Hogervorst, Frans B. L. and Peock, Susan and Stoppa-Lyonnet, Dominique and Jakubowska, Anna and Radice, Paolo and Schmutzler, Rita Katharina and Domchek, Susan M. and Piedmonte, Marion and Singer, Christian F. and Friedman, Eitan and Thomassen, Mads and Hansen, Thomas V. O. and Neuhausen, Susan L. and Szabo, Csilla I. and Blanco, Ingnacio and Greene, Mark H. and Karlan, Beth Y. and Garber, Judy and Phelan, Catherine M. and Weitzel, Jeffrey N. and Montagna, Marco and Olah, Edith and Andrulis, Irene L. and Godwin, Andrew K. and Yannoukakos, Drakoulis and Goldgar, David E. and Caldes, Trinidad and Nevanlinna, Heli and Osorio, Ana and Terry, Mary Beth and Daly, Mary B. and van Rensburg, Elisabeth J. and Hamann, Ute and Ramus, Susan J. and Toland, Amanda Ewart and Caligo, Maria A. and Olopade, Olufunmilayo I. and Tung, Nadine and Claes, Kathleen and Beattie, Mary S. and Southey, Melissa C. and Imyanitov, Evgeny N. and Tischkowitz, Marc and Janavicius, Ramunas and John, Esther M. and Kwong, Ava and Diez, Orland and Kwong, Ava and Balma{\~n}a, Judith and Barkardottir, Rosa B. and Arun, Banu K. and Rennert, Gad and Teo, Soo-Hwang and Ganz, Patricia A. and Campbell, Ian and van der Hout, Annemarie H. and van Deurzen, Carolien H. M. and Seynaeve, Caroline and Garcia, Encarna B. G{\´o}mez and van Leeuwen, Flora E. and Meijers-Heijboer, Hanne E. J. and Gille, Johannes J. P. and Ausems, Magreet G. E. M. and Blok, Marinus J. and Ligtenberg, Marjolinjin J. L. and Rookus, Matti A. and Devilee, Peter and Verhoef, Senno and van Os, Theo A. M. and Wijnen, Juul T. and Frost, Debra and Ellis, Steve and Fineberg, Elena and Platte, Radke and Evans, D. Gareth and Izatt, Luise and Eeles, Rosalind A. and Adlard, Julian and Eccles, Diana M. and Cook, Jackie and Brewer, Carole and Douglas, Fiona and Hodgson, Shirley and Morrison, Patrick J. and Side, Lucy E. and Donaldson, Alan and Houghton, Catherine and Rogers, Mark T. and Dorkins, Huw and Eason, Jacqueline and Gregory, Helen and McCann, Emma and Murray, Alex and Calender, Alain and Hardouin, Agn{\`e}s and Berthet, Pascaline and Delnatte, Capucine and Nogues, Catherine and Lasset, Christine and Houdayer, Claude and Leroux,, Dominique and Rouleau, Etienne and Prieur, Fabienne and Damiola, Francesca and Sobol, Hagay and Coupier, Isabelle and Venat-Bouvet, Laurence and Castera, Laurent and Gauthier-Villars, Marion and L{\´e}on{\´e}, M{\´e}lanie and Pujol, Pascal and Mazoyer, Sylvie and Bignon, Yves-Jean and Zlowocka-Perlowska, Elzbieta and Gronwald, Jacek and Lubinski,, Jan and Durda, Katarzyna and Jaworska, Katarzyna and Huzarski, Tomasz and Spurdle, Amanda B. and Viel, Alessandra and Peissel, Bernhard and Bonanni, Bernardo and Melloni, Guilia and Ottini, Laura and Papi, Laura and Varesco, Liliana and Tibiletti, Maria Grazia and Peterlongo, Paolo and Volorio, Sara and Manoukian, Siranoush and Pensotti, Valeria and Arnold, Norbert and Engel, Christoph and Deissler, Helmut and Gadzicki, Dorothea and Gehrig, Andrea and Kast, Karin and Rhiem, Kerstin and Meindl, Alfons and Niederacher, Dieter and Ditsch, Nina and Plendl, Hansjoerg and Preisler-Adams, Sabine and Engert, Stefanie and Sutter, Christian and Varon-Mateeva, Raymenda and Wappenschmidt, Barbara and Weber, Bernhard H. F. and Arver, Brita and Stenmark-Askmalm, Marie and Loman, Niklas and Rosenquist, Richard and Einbeigi, Zakaria and Nathanson, Katherine L. and Rebbeck, Timothy R. and Blank, Stephanie V. and Cohn, David E. and Rodriguez, Gustavo C. and Small, Laurie and Friedlander, Michael and Bae-Jump, Victoria L. and Fink-Retter, Anneliese and Rappaport, Christine and Gschwantler-Kaulich, Daphne and Pfeiler, Georg and Tea, Muy-Kheng and Lindor, Noralane M. and Kaufman, Bella and Paluch, Shani Shimon and Laitman, Yael and Skytte, Anne-Bine and Gerdes, Anne-Marie and Pedersen, Inge Sokilde and Moeller, Sanne Traasdahl and Kruse, Torben A. and Jensen, Uffe Birk and Vijai, Joseph and Sarrel, Kara and Robson, Mark and Kauff, Noah and Mulligan, Anna Marie and Glendon, Gord and Ozcelik, Hilmi and Ejlertsen, Bent and Nielsen, Finn C. and J{\o}nson, Lars and Andersen, Mette K. and Ding, Yuan Chun and Steele, Linda and Foretova, Lenka and Teul{\´e}, Alex and Lazaro, Conxi and Brunet, Joan and Pujana, Miquel Angel and Mai, Phuong L. and Loud, Jennifer T. and Walsh, Christine and Lester, Jenny and Orsulic, Sandra and Narod, Steven A. and Herzog, Josef and Sand, Sharon R. and Tognazzo, Silvia and Agata, Simona and Vaszko, Tibor and Weaver, Joellen and Stravropoulou, Alexandra V. and Buys, Saundra S. and Romero, Atocha and de la Hoya, Miguel and Aittom{\"a}ki, Kristiina and Muranen, Taru A. and Duran, Mercedes and Chung, Wendy K. and Lasa, Adriana and Dorfling, Cecilia M. and Miron, Alexander and Benitez, Javier and Senter, Leigha and Huo, Dezheng and Chan, Salina B. and Sokolenko, Anna P. and Chiquette, Jocelyne and Tihomirova, Laima and Friebel, Tara M. and Agnarsson, Bjarne A. and Lu, Karen H. and Lejbkowicz, Flavio and James, Paul A. and Hall, Per and Dunning, Alison M. and Tessier, Daniel and Cunningham, Julie and Slager, Susan L. and Chen, Wang and Hart, Steven and Stevens, Kristen and Simard, Jacques and Pastinen, Tomi and Pankratz, Vernon S. and Offit, Kenneth and Easton, Douglas F. and Chenevix-Trench, Georgia and Antoniou, Antonis C.}, title = {Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk}, series = {PLOS Genetics}, volume = {9}, journal = {PLOS Genetics}, number = {3}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127947}, pages = {e1003212}, year = {2013}, abstract = {BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 x 10(-8), HR = 1.14, 95\% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4 x 10(-8), HR = 1.27, 95\% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4 x 10(-8), HR = 1.20, 95\% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2 x 10(-4)). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5\% of BRCA1 carriers at lowest risk are 28\%-50\% compared to 81\%-100\% for the 5\% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5\% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28\% or lower, whereas the 5\% at highest risk will have a risk of 63\% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers.}, language = {en} } @article{ChenReiherHermannLuibletal.2016, author = {Chen, Jiangtian and Reiher, Wencke and Hermann-Luibl, Christiane and Sellami, Azza and Cognigni, Paola and Kondo, Shu and Helfrich-F{\"o}rster, Charlotte and Veenstra, Jan A. and Wegener, Christian}, title = {Allatostatin A Signalling in Drosophila Regulates Feeding and Sleep and Is Modulated by PDF}, series = {PLoS Genetics}, volume = {12}, journal = {PLoS Genetics}, number = {9}, doi = {10.1371/journal.pgen.1006346}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178170}, year = {2016}, abstract = {Feeding and sleep are fundamental behaviours with significant interconnections and cross-modulations. The circadian system and peptidergic signals are important components of this modulation, but still little is known about the mechanisms and networks by which they interact to regulate feeding and sleep. We show that specific thermogenetic activation of peptidergic Allatostatin A (AstA)-expressing PLP neurons and enteroendocrine cells reduces feeding and promotes sleep in the fruit fly Drosophila. The effects of AstA cell activation are mediated by AstA peptides with receptors homolog to galanin receptors subserving similar and apparently conserved functions in vertebrates. We further identify the PLP neurons as a downstream target of the neuropeptide pigment-dispersing factor (PDF), an output factor of the circadian clock. PLP neurons are contacted by PDF-expressing clock neurons, and express a functional PDF receptor demonstrated by cAMP imaging. Silencing of AstA signalling and continuous input to AstA cells by tethered PDF changes the sleep/activity ratio in opposite directions but does not affect rhythmicity. Taken together, our results suggest that pleiotropic AstA signalling by a distinct neuronal and enteroendocrine AstA cell subset adapts the fly to a digestive energy-saving state which can be modulated by PDF.}, language = {en} } @phdthesis{Chen2005, author = {Chen, Christian}, title = {Wirkungsunterschiede von AT-1-Rezeptorantagonisten und ACE-Hemmern auf die endotheliale Dysfunktion bei Herzinsuffizienz}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-18880}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Untersucht wurde die Wirkungsunterschiede von dem AT-1-Rezeptorantagonist Irbesartan und dem ACE-Hemmer Trandolapril auf die endotheliale Dysfunktion bei herzinsuffizienzten Ratten nach Herzinfarkt. Zusammenfassend zeigte sich ein Vorteil des AT-1-Rezeptorantagonisten gegen{\"u}ber dem ACE-Hemmer.}, language = {de} } @article{AntoniouKuchenbaeckerSoucyetal.2012, author = {Antoniou, Antonis C. and Kuchenbaecker, Karoline B. and Soucy, Penny and Beesley, Jonathan and Chen, Xiaoqing and McGuffog, Lesley and Lee, Andrew and Barrowdale, Daniel and Healey, Sue and Sinilnikova, Olga M. and Caligo, Maria A. and Loman, Niklas and Harbst, Katja and Lindblom, Annika and Arver, Brita and Rosenquist, Richard and Karlsson, Per and Nathanson, Kate and Domchek, Susan and Rebbeck, Tim and Jakubowska, Anna and Lubinski, Jan and Jaworska, Katarzyna and Durda, Katarzyna and Zlowowcka-Perłowska, Elżbieta and Osorio, Ana and Dur{\´a}n, Mercedes and Andr{\´e}s, Raquel and Ben{\´i}tez, Javier and Hamann, Ute and Hogervorst, Frans B. and van Os, Theo A. and Verhoef, Senno and Meijers-Heijboer, Hanne E. J. and Wijnen, Juul and Garcia, Encarna B. G{\´o}mez and Ligtenberg, Marjolijn J. and Kriege, Mieke and Coll{\´e}e, Margriet and Ausems, Margreet G. E. M. and Oosterwijk, Jan C. and Peock, Susan and Frost, Debra and Ellis, Steve D. and Platte, Radka and Fineberg, Elena and Evans, D. Gareth and Lalloo, Fiona and Jacobs, Chris and Eeles, Ros and Adlard, Julian and Davidson, Rosemarie and Cole, Trevor and Cook, Jackie and Paterson, Joan and Douglas, Fiona and Brewer, Carole and Hodgson, Shirley and Morrison, Patrick J. and Walker, Lisa and Rogers, Mark T. and Donaldson, Alan and Dorkins, Huw and Godwin, Andrew K. and Bove, Betsy and Stoppa-Lyonnet, Dominique and Houdayer, Claude and Buecher, Bruno and de Pauw, Antoine and Mazoyer, Sylvie and Calender, Alain and L{\´e}on{\´e}, M{\´e}lanie and Bressac-de Paillerets, Brigitte and Caron, Olivier and Sobol, Hagay and Frenay, Marc and Prieur, Fabienne and Ferrer, Sandra Fert and Mortemousque, Isabelle and Buys, Saundra and Daly, Mary and Miron, Alexander and Terry, Mary Beth and Hopper, John L. and John, Esther M. and Southey, Melissa and Goldgar, David and Singer, Christian F. and Fink-Retter, Anneliese and Muy-Kheng, Tea and Geschwantler Kaulich, Daphne and Hansen, Thomas V. O. and Nielsen, Finn C. and Barkardottir, Rosa B. and Gaudet, Mia and Kirchhoff, Tomas and Joseph, Vijai and Dutra-Clarke, Ana and Offit, Kenneth and Piedmonte, Marion and Kirk, Judy and Cohn, David and Hurteau, Jean and Byron, John and Fiorica, James and Toland, Amanda E. and Montagna, Marco and Oliani, Cristina and Imyanitov, Evgeny and Isaacs, Claudine and Tihomirova, Laima and Blanco, Ignacio and Lazaro, Conxi and Teul{\´e}, Alex and Del Valle, J. and Gayther, Simon A. and Odunsi, Kunle and Gross, Jenny and Karlan, Beth Y. and Olah, Edith and Teo, Soo-Hwang and Ganz, Patricia A. and Beattie, Mary S. and Dorfling, Cecelia M. and Jansen van Rensburg, Elizabeth and Diez, Orland and Kwong, Ava and Schmutzler, Rita K. and Wappenschmidt, Barbara and Engel, Christoph and Meindl, Alfons and Ditsch, Nina and Arnold, Norbert and Heidemann, Simone and Niederacher, Dieter and Preisler-Adams, Sabine and Gadzicki, Dorothea and Varon-Mateeva, Raymonda and Deissler, Helmut and Gehrig, Andrea and Sutter, Christian and Kast, Karin and Fiebig, Britta and Sch{\"a}fer, Dieter and Caldes, Trinidad and de la Hoya, Miguel and Nevanlinna, Heli and Muranen, Taru A. and Lesp{\´e}rance, Bernard and Spurdle, Amanda B. and Neuhausen, Susan L. and Ding, Yuan C. and Wang, Xianshu and Fredericksen, Zachary and Pankratz, Vernon S. and Lindor, Noralane M. and Peterlongo, Paulo and Manoukian, Siranoush and Peissel, Bernard and Zaffaroni, Daniela and Bonanni, Bernardo and Bernard, Loris and Dolcetti, Riccardo and Papi, Laura and Ottini, Laura and Radice, Paolo and Greene, Mark H. and Loud, Jennifer T. and Andrulis, Irene L. and Ozcelik, Hilmi and Mulligan, Anna Marie and Glendon, Gord and Thomassen, Mads and Gerdes, Anne-Marie and Jensen, Uffe B. and Skytte, Anne-Bine and Kruse, Torben A. and Chenevix-Trench, Georgia and Couch, Fergus J. and Simard, Jacques and Easton, Douglas F.}, title = {Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers}, series = {Breast Cancer Research}, volume = {14}, journal = {Breast Cancer Research}, number = {R33}, organization = {CIMBA; SWE-BRCA; HEBON; EMBRACE; GEMO Study Collaborators; kConFab Investigators}, doi = {10.1186/bcr3121}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130449}, year = {2012}, abstract = {Introduction: Several common alleles have been shown to be associated with breast and/or ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Recent genome-wide association studies of breast cancer have identified eight additional breast cancer susceptibility loci: rs1011970 (9p21, CDKN2A/B), rs10995190 (ZNF365), rs704010 (ZMIZ1), rs2380205 (10p15), rs614367 (11q13), rs1292011 (12q24), rs10771399 (12p11 near PTHLH) and rs865686 (9q31.2). Methods: To evaluate whether these single nucleotide polymorphisms (SNPs) are associated with breast cancer risk for BRCA1 and BRCA2 carriers, we genotyped these SNPs in 12,599 BRCA1 and 7,132 BRCA2 mutation carriers and analysed the associations with breast cancer risk within a retrospective likelihood framework. Results: Only SNP rs10771399 near PTHLH was associated with breast cancer risk for BRCA1 mutation carriers (per-allele hazard ratio (HR) = 0.87, 95\% CI: 0.81 to 0.94, P-trend = 3 x 10\(^{-4}\)). The association was restricted to mutations proven or predicted to lead to absence of protein expression (HR = 0.82, 95\% CI: 0.74 to 0.90, P-trend = 3.1 x 10\(^{-5}\), P-difference = 0.03). Four SNPs were associated with the risk of breast cancer for BRCA2 mutation carriers: rs10995190, P-trend = 0.015; rs1011970, P-trend = 0.048; rs865686, 2df P = 0.007; rs1292011 2df P = 0.03. rs10771399 (PTHLH) was predominantly associated with estrogen receptor (ER)-negative breast cancer for BRCA1 mutation carriers (HR = 0.81, 95\% CI: 0.74 to 0.90, P-trend = 4 x 10\(^{-5}\)) and there was marginal evidence of association with ER- negative breast cancer for BRCA2 mutation carriers (HR = 0.78, 95\% CI: 0.62 to 1.00, P-trend = 0.049). Conclusions: The present findings, in combination with previously identified modifiers of risk, will ultimately lead to more accurate risk prediction and an improved understanding of the disease etiology in BRCA1 and BRCA2 mutation carriers.}, language = {en} }