@article{HohenesterKanitzSchiergensetal.2020, author = {Hohenester, Simon and Kanitz, Veronika and Schiergens, Tobias and Einer, Claudia and Nagel, Jutta and Wimmer, Ralf and Reiter, Florian P. and Gerbes, Alexander L. and De Toni, Enrico N. and Bauer, Christian and Holdt, Lesca and Mayr, Doris and Rust, Christian and Schnurr, Max and Zischka, Hans and Geier, Andreas and Denk, Gerald}, title = {IL-18 but not IL-1 signaling is pivotal for the initiation of liver injury in murine non-alcoholic fatty liver disease}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {22}, issn = {1422-0067}, doi = {10.3390/ijms21228602}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285221}, year = {2020}, abstract = {Non-alcoholic fatty liver disease (NAFLD) is rising in prevalence, and a better pathophysiologic understanding of the transition to its inflammatory phenotype (NASH) is key to the development of effective therapies. To evaluate the contribution of the NLRP3 inflammasome and its downstream effectors IL-1 and IL-18 in this process, we applied the true-to-life "American lifestyle-induced obesity syndrome" (ALiOS) diet mouse model. Development of obesity, fatty liver and liver damage was investigated in mice fed for 24 weeks according to the ALiOS protocol. Lipidomic changes in mouse livers were compared to human NAFLD samples. Receptor knockout mice for IL-1 and IL-18 were used to dissect the impact of downstream signals of inflammasome activity on the development of NAFLD. The ALiOS diet induced obesity and liver steatosis. The lipidomic changes closely mimicked changes in human NAFLD. A pro-inflammatory gene expression pattern in liver tissue and increased serum liver transaminases indicated early liver damage in the absence of histological evidence of NASH. Mechanistically, Il-18r\(^{-/-}\)- but not Il-1r\(^{-/-}\) mice were protected from early liver damage, possibly due to silencing of the pro-inflammatory gene expression pattern. Our study identified NLRP3 activation and IL-18R-dependent signaling as potential modulators of early liver damage in NAFLD, preceding development of histologic NASH.}, language = {en} } @article{SchultheisLiewaldBambergetal.2011, author = {Schultheis, Christian and Liewald, Jana Fiona and Bamberg, Ernst and Nagel, Georg and Gottschalk, Alexander}, title = {Optogenetic Long-Term Manipulation of Behavior and Animal Development}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0018766}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141250}, pages = {e18766}, year = {2011}, abstract = {Channelrhodopsin-2 (ChR2) is widely used for rapid photodepolarization of neurons, yet, as it requires high-intensity blue light for activation, it is not suited for long-term in vivo applications, e. g. for manipulations of behavior, or photoactivation of neurons during development. We used "slow" ChR2 variants with mutations in the C128 residue, that exhibit delayed off-kinetics and increased light sensitivity in Caenorhabditis elegans. Following a 1 s light pulse, we could photodepolarize neurons and muscles for minutes (and with repeated brief stimulation, up to days) with low-intensity light. Photoactivation of ChR2(C128S) in command interneurons elicited long-lasting alterations in locomotion. Finally, we could optically induce profound changes in animal development: Long-term photoactivation of ASJ neurons, which regulate larval growth, bypassed the constitutive entry into the "dauer" larval state in daf-11 mutants. These lack a guanylyl cyclase, which possibly renders ASJ neurons hyperpolarized. Furthermore, photostimulated ASJ neurons could acutely trigger dauer-exit. Thus, slow ChR2s can be employed to long-term photoactivate behavior and to trigger alternative animal development.}, language = {en} } @phdthesis{Nagel2003, author = {Nagel, Christian}, title = {Gl{\"a}ttungsverfahren f{\"u}r semidefinite Programme}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8099}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {In dieser Arbeit werden Algorithmen zur L{\"o}sung von linearen semidefiniten Programmen beschrieben. Unter einer geeigneten Regularit{\"a}tsvoraussetzung ist ein semidefinites Programm {\"a}quivalent zu seinen Optimalit{\"a}tsbedingungen. Die Optimalit{\"a}tsbedingungen bzw. die Zentralen-Pfad-Bedingungen {\"u}berf{\"u}hren wir zun{\"a}chst durch matrixwertige NCP-Funktionen in ein nichtlineares Gleichungssystem. Dieses nichtlineare und teilweise nicht differenzierbare Gleichungssystem l{\"o}sen wir dann mit einem Newton-{\"a}hnlichen Verfahren. Durch die Umformulierung in ein nichtlineares Gleichungssystem muss w{\"a}hrend der Iteration nicht mehr explizit die positive (Semi-)Definitheit der beteiligten Matrizen beachtet werden. Weiter wird gezeigt, dass dieser Ansatz im Gegensatz zu Inneren-Punkte-Methoden sofort symmetrische Suchrichtungen erzeugt. Um globale Konvergenz zu erhalten, werden verschiedene Globalisierungsstrategien (Schrittweitenbestimmung, Trust-Region-Ansatz) untersucht. F{\"u}r das betrachtete Pr{\"a}diktor-Korrektor-Verfahren und das Trust-Region-Verfahren wird lokal superlineare Konvergenz unter strikter Komplementarit{\"a}t und Nichtdegeneriertheit gezeigt. Die theoretische Untersuchung eines nichtglatten Newton-Verfahrens liefert ein lokal quadratisches Konvergenzverhalten ohne strikte Komplementarit{\"a}t, wenn die Nichtdegeneriertheitsvoraussetzung geeignet modifiziert wird.}, subject = {Semidefinite Optimierung}, language = {de} } @article{vomDahlMuellerBerishaetal.2022, author = {vom Dahl, Christian and M{\"u}ller, Christoph Emanuel and Berisha, Xhevat and Nagel, Georg and Zimmer, Thomas}, title = {Coupling the cardiac voltage-gated sodium channel to channelrhodopsin-2 generates novel optical switches for action potential studies}, series = {Membranes}, volume = {12}, journal = {Membranes}, number = {10}, issn = {2077-0375}, doi = {10.3390/membranes12100907}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288228}, year = {2022}, abstract = {Voltage-gated sodium (Na\(^+\)) channels respond to short membrane depolarization with conformational changes leading to pore opening, Na\(^+\) influx, and action potential (AP) upstroke. In the present study, we coupled channelrhodopsin-2 (ChR2), the key ion channel in optogenetics, directly to the cardiac voltage-gated Na\(^+\) channel (Na\(_v\)1.5). Fusion constructs were expressed in Xenopus laevis oocytes, and electrophysiological recordings were performed by the two-microelectrode technique. Heteromeric channels retained both typical Na\(_v\)1.5 kinetics and light-sensitive ChR2 properties. Switching to the current-clamp mode and applying short blue-light pulses resulted either in subthreshold depolarization or in a rapid change of membrane polarity typically seen in APs of excitable cells. To study the effect of individual K\(^+\) channels on the AP shape, we co-expressed either K\(_v\)1.2 or hERG with one of the Na\(_v\)1.5-ChR2 fusions. As expected, both delayed rectifier K\(^+\) channels shortened AP duration significantly. K\(_v\)1.2 currents remarkably accelerated initial repolarization, whereas hERG channel activity efficiently restored the resting membrane potential. Finally, we investigated the effect of the LQT3 deletion mutant ΔKPQ on the AP shape and noticed an extremely prolonged AP duration that was directly correlated to the size of the non-inactivating Na\(^+\) current fraction. In conclusion, coupling of ChR2 to a voltage-gated Na\(^+\) channel generates optical switches that are useful for studying the effect of individual ion channels on the AP shape. Moreover, our novel optogenetic approach provides the potential for an application in pharmacology and optogenetic tissue-engineering.}, language = {en} } @article{KosterGurumurthyKumaretal.2022, author = {Koster, Stefanie and Gurumurthy, Rajendra Kumar and Kumar, Naveen and Prakash, Pon Ganish and Dhanraj, Jayabhuvaneshwari and Bayer, Sofia and Berger, Hilmar and Kurian, Shilpa Mary and Drabkina, Marina and Mollenkopf, Hans-Joachim and Goosmann, Christian and Brinkmann, Volker and Nagel, Zachary and Mangler, Mandy and Meyer, Thomas F. and Chumduri, Cindrilla}, title = {Modelling Chlamydia and HPV co-infection in patient-derived ectocervix organoids reveals distinct cellular reprogramming}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-022-28569-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301349}, year = {2022}, abstract = {Coinfections with pathogenic microbes continually confront cervical mucosa, yet their implications in pathogenesis remain unclear. Lack of in-vitro models recapitulating cervical epithelium has been a bottleneck to study coinfections. Using patient-derived ectocervical organoids, we systematically modeled individual and coinfection dynamics of Human papillomavirus (HPV)16 E6E7 and Chlamydia, associated with carcinogenesis. The ectocervical stem cells were genetically manipulated to introduce E6E7 oncogenes to mimic HPV16 integration. Organoids from these stem cells develop the characteristics of precancerous lesions while retaining the self-renewal capacity and organize into mature stratified epithelium similar to healthy organoids. HPV16 E6E7 interferes with Chlamydia development and induces persistence. Unique transcriptional and post-translational responses induced by Chlamydia and HPV lead to distinct reprogramming of host cell processes. Strikingly, Chlamydia impedes HPV-induced mechanisms that maintain cellular and genome integrity, including mismatch repair in the stem cells. Together, our study employing organoids demonstrates the hazard of multiple infections and the unique cellular microenvironment they create, potentially contributing to neoplastic progression.}, language = {en} }