@article{TomasekOtt2016, author = {Tomasek, Stefan and Ott, Christine}, title = {Nils Mohl und Hartmann von Aue. Zur intertextuellen Verweisstruktur in Stadtrandritter und ihrem didaktischen Potential f{\"u}r den Deutschunterricht.}, series = {Literatur im Unterricht - Texte der Gegenwartsliteratur f{\"u}r die Schule}, journal = {Literatur im Unterricht - Texte der Gegenwartsliteratur f{\"u}r die Schule}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-210590}, pages = {267-286}, year = {2016}, abstract = {Kein Abstract verf{\"u}gbar.}, language = {de} } @article{OttDorschFraunholzetal.2015, author = {Ott, Christine and Dorsch, Eva and Fraunholz, Martin and Straub, Sebastian and Kozjak-Pavlovic, Vera}, title = {Detailed Analysis of the Human Mitochondrial Contact Site Complex Indicate a Hierarchy of Subunits}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {3}, doi = {10.1371/journal.pone.0120213}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125347}, pages = {e0120213}, year = {2015}, abstract = {Mitochondrial inner membrane folds into cristae, which significantly increase its surface and are important for mitochondrial function. The stability of cristae depends on the mitochondrial contact site (MICOS) complex. In human mitochondria, the inner membrane MICOS complex interacts with the outer membrane sorting and assembly machinery (SAM) complex, to form the mitochondrial intermembrane space bridging complex (MIB). We have created knockdown cell lines of most of the MICOS and MIB components and have used them to study the importance of the individual subunits for the cristae formation and complex stability. We show that the most important subunits of the MIB complex in human mitochondria are Mic60/Mitofilin, Mic19/CHCHD3 and an outer membrane component Sam50. We provide additional proof that ApoO indeed is a subunit of the MICOS and MIB complexes and propose the name Mic23 for this protein. According to our results, Mic25/CHCHD6, Mic27/ApoOL and Mic23/ApoO appear to be periphery subunits of the MICOS complex, because their depletion does not affect cristae morphology or stability of other components.}, language = {en} } @article{Ott2017, author = {Ott, Christine}, title = {Literarisches Dorfleben in Maienfeld oder Wie Heidi lebte.}, series = {kjl\&m - Kinder-/Jugendliteratur und Medien in Forschung, Literatur und Bibliothek}, volume = {69}, journal = {kjl\&m - Kinder-/Jugendliteratur und Medien in Forschung, Literatur und Bibliothek}, number = {3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-210610}, pages = {14-22}, year = {2017}, abstract = {Kein Abstract verf{\"u}gbar.}, language = {de} } @article{Kozjak‑PavlovicOttUtechetal.2013, author = {Kozjak‑Pavlovic, Vera and Ott, Christine and Utech, Mandy and Goetz, Monika and Rudel, Thomas}, title = {Requirements for the import of neisserial Omp85 into the outer membrane of human mitochondria}, series = {Bioscience Reports}, journal = {Bioscience Reports}, doi = {10.1042/BSR20130007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96381}, year = {2013}, abstract = {β-Barrel proteins are present only in the outer membranes of Gram-negative bacteria, chloroplasts and mitochondria. Fungal mitochondria were shown to readily import and assemble bacterial β-barrel proteins, but human mitochondria exhibit certain selectivity. Whereas enterobacterial β-barrel proteins are not imported, neisserial ones are. Of those, solely neisserial Omp85 is integrated into the outer membrane of mitochondria. In this study, we wanted to identify the signal that targets neisserial β-barrel proteins to mitochondria. We exchanged parts of neisserial Omp85 and PorB with their Escherichia coli homologues BamA and OmpC. For PorB, we could show that its C-terminal quarter can direct OmpC to mitochondria. In the case of Omp85, we could identify several amino acids of the C-terminal β-sorting signal as crucial for mitochondrial targeting. Additionally, we found that at least two POTRA (polypeptide-transport associated) domains and not only the β-sorting signal of Omp85 are needed for its membrane integration and function in human mitochondria. We conclude that the signal that directs neisserial β-barrel proteins to mitochondria is not conserved between these proteins. Furthermore, a linear mitochondrial targeting signal probably does not exist. It is possible that the secondary structure of β-barrel proteins plays a role in directing these proteins to mitochondria.}, language = {en} } @article{IoakeimidisOttKozjakPavlovicetal.2014, author = {Ioakeimidis, Fotis and Ott, Christine and Kozjak-Pavlovic, Vera and Violitzi, Foteini and Rinotas, Vagelis and Makrinou, Eleni and Eliopoulos, Elias and Fasseas, Costas and Kollias, George and Douni, Eleni}, title = {A Splicing Mutation in the Novel Mitochondrial Protein DNAJC11 Causes Motor Neuron Pathology Associated with Cristae Disorganization, and Lymphoid Abnormalities in Mice}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {8}, doi = {10.1371/journal.pone.0104237}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115581}, pages = {e104237}, year = {2014}, abstract = {Mitochondrial structure and function is emerging as a major contributor to neuromuscular disease, highlighting the need for the complete elucidation of the underlying molecular and pathophysiological mechanisms. Following a forward genetics approach with N-ethyl-N-nitrosourea (ENU)-mediated random mutagenesis, we identified a novel mouse model of autosomal recessive neuromuscular disease caused by a splice-site hypomorphic mutation in a novel gene of unknown function, DnaJC11. Recent findings have demonstrated that DNAJC11 protein co-immunoprecipitates with proteins of the mitochondrial contact site (MICOS) complex involved in the formation of mitochondrial cristae and cristae junctions. Homozygous mutant mice developed locomotion defects, muscle weakness, spasticity, limb tremor, leucopenia, thymic and splenic hypoplasia, general wasting and early lethality. Neuropathological analysis showed severe vacuolation of the motor neurons in the spinal cord, originating from dilatations of the endoplasmic reticulum and notably from mitochondria that had lost their proper inner membrane organization. The causal role of the identified mutation in DnaJC11 was verified in rescue experiments by overexpressing the human ortholog. The full length 63 kDa isoform of human DNAJC11 was shown to localize in the periphery of the mitochondrial outer membrane whereas putative additional isoforms displayed differential submitochondrial localization. Moreover, we showed that DNAJC11 is assembled in a high molecular weight complex, similarly to mitofilin and that downregulation of mitofilin or SAM50 affected the levels of DNAJC11 in HeLa cells. Our findings provide the first mouse mutant for a putative MICOS protein and establish a link between DNAJC11 and neuromuscular diseases.}, language = {en} } @article{HebestreitZeidlerSchippersetal.2022, author = {Hebestreit, Helge and Zeidler, Cornelia and Schippers, Christopher and de Zwaan, Martina and Deckert, J{\"u}rgen and Heuschmann, Peter and Krauth, Christian and Bullinger, Monika and Berger, Alexandra and Berneburg, Mark and Brandstetter, Lilly and Deibele, Anna and Dieris-Hirche, Jan and Graessner, Holm and G{\"u}ndel, Harald and Herpertz, Stephan and Heuft, Gereon and Lapstich, Anne-Marie and L{\"u}cke, Thomas and Maisch, Tim and Mundlos, Christine and Petermann-Meyer, Andrea and M{\"u}ller, Susanne and Ott, Stephan and Pfister, Lisa and Quitmann, Julia and Romanos, Marcel and Rutsch, Frank and Schaubert, Kristina and Schubert, Katharina and Schulz, J{\"o}rg B. and Schweiger, Susann and T{\"u}scher, Oliver and Ungeth{\"u}m, Kathrin and Wagner, Thomas O. F. and Haas, Kirsten}, title = {Dual guidance structure for evaluation of patients with unclear diagnosis in centers for rare diseases (ZSE-DUO): study protocol for a controlled multi-center cohort study}, series = {Orphanet Journal of Rare Diseases}, volume = {17}, journal = {Orphanet Journal of Rare Diseases}, number = {1}, doi = {10.1186/s13023-022-02176-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300440}, year = {2022}, abstract = {Background In individuals suffering from a rare disease the diagnostic process and the confirmation of a final diagnosis often extends over many years. Factors contributing to delayed diagnosis include health care professionals' limited knowledge of rare diseases and frequent (co-)occurrence of mental disorders that may complicate and delay the diagnostic process. The ZSE-DUO study aims to assess the benefits of a combination of a physician focusing on somatic aspects with a mental health expert working side by side as a tandem in the diagnostic process. Study design This multi-center, prospective controlled study has a two-phase cohort design. Methods Two cohorts of 682 patients each are sequentially recruited from 11 university-based German Centers for Rare Diseases (CRD): the standard care cohort (control, somatic expertise only) and the innovative care cohort (experimental, combined somatic and mental health expertise). Individuals aged 12 years and older presenting with symptoms and signs which are not explained by current diagnoses will be included. Data will be collected prior to the first visit to the CRD's outpatient clinic (T0), at the first visit (T1) and 12 months thereafter (T2). Outcomes Primary outcome is the percentage of patients with one or more confirmed diagnoses covering the symptomatic spectrum presented. Sample size is calculated to detect a 10 percent increase from 30\% in standard care to 40\% in the innovative dual expert cohort. Secondary outcomes are (a) time to diagnosis/diagnoses explaining the symptomatology; (b) proportion of patients successfully referred from CRD to standard care; (c) costs of diagnosis including incremental cost effectiveness ratios; (d) predictive value of screening instruments administered at T0 to identify patients with mental disorders; (e) patients' quality of life and evaluation of care; and f) physicians' satisfaction with the innovative care approach. Conclusions This is the first multi-center study to investigate the effects of a mental health specialist working in tandem with a somatic expert physician in CRDs. If this innovative approach proves successful, it will be made available on a larger scale nationally and promoted internationally. In the best case, ZSE-DUO can significantly shorten the time to diagnosis for a suspected rare disease.}, language = {en} }