@article{BeitzingerStefaniKronhardtetal.2012, author = {Beitzinger, Christoph and Stefani, Caroline and Kronhardt, Angelika and Rolando, Monica and Flatau, Gilles and Lemichez, Emanuel and Benz, Roland}, title = {Role of N-Terminal His6-Tags in Binding and Efficient Translocation of Polypeptides into Cells Using Anthrax Protective Antigen (PA)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76325}, year = {2012}, abstract = {It is of interest to define bacterial toxin biochemical properties to use them as molecular-syringe devices in order to deliver enzymatic activities into host cells. Binary toxins of the AB7/8-type are among the most potent and specialized bacterial protein toxins. The B subunits oligomerize to form a pore that binds with high affinity host cell receptors and the enzymatic A subunit. This allows the endocytosis of the complex and subsequent injection of the A subunit into the cytosol of the host cells. Here we report that the addition of an N-terminal His6-tag to different proteins increased their binding affinity to the protective antigen (PA) PA63-channels, irrespective if they are related (C2I) or unrelated (gpJ, EDIN) to the AB7/8-family of toxins. His6-EDIN exhibited voltage-dependent increase of the stability constant for binding by a factor of about 25 when the trans-side corresponding to the cell interior was set to 270 mV. Surprisingly, the C. botulinum toxin C2II-channel did not share this feature of PA63. Cell-based experiments demonstrated that addition of an N-terminal His6-tag promoted also intoxication of endothelial cells by C2I or EDIN via PA63. Our results revealed that addition of His6-tags to several factors increase their binding properties to PA63 and enhance the property to intoxicate cells.}, subject = {Biologie}, language = {en} } @article{AupperleLellbachHeidrichKehletal.2023, author = {Aupperle-Lellbach, Heike and Heidrich, Daniela and Kehl, Alexandra and Conrad, David and Brockmann, Maria and T{\"o}rner, Katrin and Beitzinger, Christoph and M{\"u}ller, Tobias}, title = {KITLG copy number germline variations in schnauzer breeds and their relevance in digital squamous cell carcinoma in black giant schnauzers}, series = {Veterinary Sciences}, volume = {10}, journal = {Veterinary Sciences}, number = {2}, issn = {2306-7381}, doi = {10.3390/vetsci10020147}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303913}, year = {2023}, abstract = {Copy number variations (CNVs) of the KITLG gene seem to be involved in the oncogenesis of digital squamous cell carcinoma (dSCC). The aims of this study were (1) to investigate KITLG CNV in giant (GS), standard (SS), and miniature (MS) schnauzers and (2) to compare KITLG CNV between black GS with and without dSCC. Blood samples from black GS (22 with and 17 without dSCC), black SS (18 with and 4 without dSSC; 5 unknown), and 50 MS (unknown dSSC status and coat colour) were analysed by digital droplet PCR. The results are that (1) most dogs had a copy number (CN) value > 4 (range 2.5-7.6) with no significant differences between GS, SS, and MS, and (2) the CN value in black GS with dSCC was significantly higher than in those without dSCC (p = 0.02). CN values > 5.8 indicate a significantly increased risk for dSCC, while CN values < 4.7 suggest a reduced risk for dSCC (grey area: 4.7-5.8). Diagnostic testing for KITLG CNV may sensitise owners to the individual risk of their black GS for dSCC. Further studies should investigate the relevance of KITLG CNV in SS and the protective effects in MS, who rarely suffer from dSCC.}, language = {en} } @article{CerezoEchevarriaKehlBeitzingeretal.2023, author = {Cerezo-Echevarria, Argi{\~n}e and Kehl, Alexandra and Beitzinger, Christoph and M{\"u}ller, Tobias and Klopfleisch, Robert and Aupperle-Lellbach, Heike}, title = {Evaluating the histologic grade of digital squamous cell carcinomas in dogs and copy number variation of KIT Ligand — a correlation study}, series = {Veterinary Sciences}, volume = {10}, journal = {Veterinary Sciences}, number = {2}, issn = {2306-7381}, doi = {10.3390/vetsci10020088}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304824}, year = {2023}, abstract = {Dark-haired dogs are predisposed to the development of digital squamous cell carcinoma (DSCC). This may potentially suggest an underlying genetic predisposition not yet completely elucidated. Some authors have suggested a potential correlation between the number of copies KIT Ligand (KITLG) and the predisposition of dogs to DSCC, containing a higher number of copies in those affected by the neoplasm. In this study, the aim was to evaluate a potential correlation between the number of copies of the KITLG and the histological grade of malignancy in dogs with DSCC. For this, 72 paraffin-embedded DSCCs with paired whole blood samples of 70 different dogs were included and grouped according to their haircoat color as follow: Group 0/unknown haircoat color (n = 11); Group 1.a/black non-Schnauzers (n = 15); group 1.b/black Schnauzers (n = 33); group 1.c/black and tan dogs (n = 7); group 2/tan animals (n = 4). The DSCCs were histologically graded. Additionally, KITLG Copy Number Variation (CNV) was determined by ddPCR. A significant correlation was observed between KITLG copy number and the histological grade and score value. This finding may suggest a possible factor for the development of canine DSCC, thus potentially having an impact on personalized veterinary oncological strategies and breeding programs.}, language = {en} } @article{GrassingerFlorenMuelleretal.2021, author = {Grassinger, Julia Maria and Floren, Andreas and M{\"u}ller, Tobias and Cerezo-Echevarria, Argi{\~n}e and Beitzinger, Christoph and Conrad, David and T{\"o}rner, Katrin and Staudacher, Marlies and Aupperle-Lellbach, Heike}, title = {Digital lesions in dogs: a statistical breed analysis of 2912 cases}, series = {Veterinary Sciences}, volume = {8}, journal = {Veterinary Sciences}, number = {7}, issn = {2306-7381}, doi = {10.3390/vetsci8070136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242690}, year = {2021}, abstract = {Breed predispositions to canine digital neoplasms are well known. However, there is currently no statistical analysis identifying the least affected breeds. To this end, 2912 canine amputated digits submitted from 2014-2019 to the Laboklin GmbH \& Co. KG for routine diagnostics were statistically analyzed. The study population consisted of 155 different breeds (most common: 634 Mongrels, 411 Schnauzers, 197 Labrador Retrievers, 93 Golden Retrievers). Non-neoplastic processes were present in 1246 (43\%), tumor-like lesions in 138 (5\%), and neoplasms in 1528 cases (52\%). Benign tumors (n = 335) were characterized by 217 subungual keratoacanthomas, 36 histiocytomas, 35 plasmacytomas, 16 papillomas, 12 melanocytomas, 9 sebaceous gland tumors, 6 lipomas, and 4 bone tumors. Malignant neoplasms (n = 1193) included 758 squamous cell carcinomas (SCC), 196 malignant melanomas (MM), 76 soft tissue sarcomas, 52 mast cell tumors, 37 non-specified sarcomas, 29 anaplastic neoplasms, 24 carcinomas, 20 bone tumors, and 1 histiocytic sarcoma. Predisposed breeds for SCC included the Schnauzer (log OR = 2.61), Briard (log OR = 1.78), Rottweiler (log OR = 1.54), Poodle (log OR = 1.40), and Dachshund (log OR = 1.30). Jack Russell Terriers (log OR = -2.95) were significantly less affected by SCC than Mongrels. Acral MM were significantly more frequent in Rottweilers (log OR = 1.88) and Labrador Retrievers (log OR = 1.09). In contrast, Dachshunds (log OR = -2.17), Jack Russell Terriers (log OR = -1.88), and Rhodesian Ridgebacks (log OR = -1.88) were rarely affected. This contrasted with the well-known predisposition of Dachshunds and Rhodesian Ridgebacks to oral and cutaneous melanocytic neoplasms. Further studies are needed to explain the underlying reasons for breed predisposition or "resistance" to the development of specific acral tumors and/or other sites.}, language = {en} } @article{BeitzingerBronnhuberDuschaetal.2013, author = {Beitzinger, Christoph and Bronnhuber, Annika and Duscha, Kerstin and Riedl, Zsuzsanna and Huber-Lang, Markus and Benz, Roland and Hajos, Gy{\"o}rgy and Barth, Holger}, title = {Designed Azolopyridinium Salts Block Protective Antigen Pores In Vitro and Protect Cells from Anthrax Toxin}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0066099}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130097}, pages = {e66099}, year = {2013}, abstract = {Background Several intracellular acting bacterial protein toxins of the AB-type, which are known to enter cells by endocytosis, are shown to produce channels. This holds true for protective antigen (PA), the binding component of the tripartite anthrax-toxin of Bacillus anthracis. Evidence has been presented that translocation of the enzymatic components of anthrax-toxin across the endosomal membrane of target cells and channel formation by the heptameric/octameric \(PA_{63}\) binding/translocation component are related phenomena. Chloroquine and some 4-aminoquinolones, known as potent drugs against Plasmodium falciparium infection of humans, block efficiently the \(PA_{63}\)-channel in a dose dependent way. Methodology/Principal Findings Here we demonstrate that related positively charged heterocyclic azolopyridinium salts block the \(PA_{63}\)-channel in the µM range, when both, inhibitor and \(PA_{63}\) are added to the same side of the membrane, the cis-side, which corresponds to the lumen of acidified endosomal vesicles of target cells. Noise-analysis allowed the study of the kinetics of the plug formation by the heterocycles. In vivo experiments using J774A.1 macrophages demonstrated that the inhibitors of \(PA_{63}\)-channel function also efficiently block intoxication of the cells by the combination lethal factor and \(PA_{63}\) in the same concentration range as they block the channels in vitro. Conclusions/Significance These results strongly argue in favor of a transport of lethal factor through the \(PA_{63}\)-channel and suggest that the heterocycles used in this study could represent attractive candidates for development of novel therapeutic strategies against anthrax.}, language = {en} } @article{AngelikaRolandoBeitzingeretal.2011, author = {Angelika, Kronhardt and Rolando, Monica and Beitzinger, Christoph and Stefani, Caroline and Leuber, Michael and Flatau, Gilles and Popoff, Michel R. and Benz, Roland and Lemichez, Emmanuel}, title = {Cross-Reactivity of Anthrax and C2 Toxin: Protective Antigen Promotes the Uptake of Botulinum C2I Toxin into Human Endothelial Cells}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0023133}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134791}, pages = {e23133}, year = {2011}, abstract = {Binary toxins are among the most potent bacterial protein toxins performing a cooperative mode of translocation and exhibit fatal enzymatic activities in eukaryotic cells. Anthrax and C2 toxin are the most prominent examples for the AB(7/8) type of toxins. The B subunits bind both host cell receptors and the enzymatic A polypeptides to trigger their internalization and translocation into the host cell cytosol. C2 toxin is composed of an actin ADP-ribosyltransferase (C2I) and C2II binding subunits. Anthrax toxin is composed of adenylate cyclase (EF) and MAPKK protease (LF) enzymatic components associated to protective antigen (PA) binding subunit. The binding and translocation components anthrax protective antigen (PA(63)) and C2II of C2 toxin share a sequence homology of about 35\%, suggesting that they might substitute for each other. Here we show by conducting in vitro measurements that PA(63) binds C2I and that C2II can bind both EF and LF. Anthrax edema factor (EF) and lethal factor (LF) have higher affinities to bind to channels formed by C2II than C2 toxin's C2I binds to anthrax protective antigen (PA(63)). Furthermore, we could demonstrate that PA in high concentration has the ability to transport the enzymatic moiety C2I into target cells, causing actin modification and cell rounding. In contrast, C2II does not show significant capacity to promote cell intoxication by EF and LF. Together, our data unveiled the remarkable flexibility of PA in promoting C2I heterologous polypeptide translocation into cells.}, language = {de} } @article{KronhardtBeitzingerBarthetal.2016, author = {Kronhardt, Angelika and Beitzinger, Christoph and Barth, Holger and Benz, Roland}, title = {Chloroquine Analog Interaction with C2-and Iota-Toxin in Vitro and in Living Cells}, series = {Toxins}, volume = {8}, journal = {Toxins}, number = {8}, doi = {10.3390/toxins8080237}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168286}, pages = {237}, year = {2016}, abstract = {C2-toxin from Clostridium botulinum and Iota-toxin from Clostridium perfringens belong both to the binary A-B-type of toxins consisting of two separately secreted components, an enzymatic subunit A and a binding component B that facilitates the entry of the corresponding enzymatic subunit into the target cells. The enzymatic subunits are in both cases actin ADP-ribosyltransferases that modify R177 of globular actin finally leading to cell death. Following their binding to host cells' receptors and internalization, the two binding components form heptameric channels in endosomal membranes which mediate the translocation of the enzymatic components Iota a and C2I from endosomes into the cytosol of the target cells. The binding components form ion-permeable channels in artificial and biological membranes. Chloroquine and related 4-aminoquinolines were able to block channel formation in vitro and intoxication of living cells. In this study, we extended our previous work to the use of different chloroquine analogs and demonstrate that positively charged aminoquinolinium salts are able to block channels formed in lipid bilayer membranes by the binding components of C2- and Iota-toxin. Similarly, these molecules protect cultured mammalian cells from intoxication with C2- and Iota-toxin. The aminoquinolinium salts did presumably not interfere with actin ADP-ribosylation or receptor binding but blocked the pores formed by C2IIa and Iota b in living cells and in vitro. The blocking efficiency of pores formed by Iota b and C2IIa by the chloroquine analogs showed interesting differences indicating structural variations between the types of protein-conducting nanochannels formed by Iota b and C2IIa.}, language = {en} } @phdthesis{Beitzinger2011, author = {Beitzinger, Christoph}, title = {Binding-, Blocking- and Translocation-Processes Concerning Anthrax-Toxin and Related Bacterial Protein-Toxins of the AB7-Family}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70052}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Bacterial protein toxins belong to the most potent toxins which are known. They exist in many different forms and are part of our every day live. Some of them are spread by the bacteria during infections and therefore play a crucial role in pathogenicity of these strains. Others are secreted as a defense mechanism and could be uptaken with spoiled food. Concerning toxicity, some of the binary toxins of the AB7-type belong to the most potent and dangerous toxins in the world. Even very small amounts of these proteins are able to cause severe symptoms during an infection with pathogen species of the genus Clostridium or Bacillus. Apart from the thread the toxins constitute, they exhibit a unique way of intoxication. Members of the AB7-toxin family consist of a pore-forming subunit B, that acts as a molecular syringe to translocate the enzymatic moieties A into the cytosol of target cells. This complex mechanism does not only kill cells with high efficiency and therefore should be studied for treatment, but also displays a possibility to address certain cells with a specific protein cargo if used as a molecular delivery tool. Concerning both issues, binding and translocation of the channel are the crucial steps to either block or modify the system in the desired way. To gain deeper insight into the transport of binary toxins the structure of the B subunit is of great importance, but being a membrane protein, no crystal could be obtained up to now for either protective antigen (PA) of Anthrax toxin or any other AB7-type binding domain. Therefore, the method of choice in this work is an electro-physical approach using the so-called black-lipid-bilayer system for determination of biophysical constants. Additionally, diverse cell based assays serve as a proving method for the data gained during in vitro measurements. Further information was gathered with specially designed mutants of the protein channel. The first part of this thesis focuses on the translocation process and its possible use as a molecular tool to deliver protein cargo into special cell types. The task was addressed by measuring the binding of different effector proteins related and unrelated to the AB7 toxin family. These proteins were tested in titration experiments for the blockage of the ion current through a membrane saturated with toxin channels. Especially the influence of positively charged His-tags has been determined in detail for PA and C2II. As described in chapter 2, a His-tag transferred the ability of being transported by PA, but not by C2II, to different proteins like EDIN (from S. aureus) in vitro and in cell-based experiments. This process was found to change the well-known voltage-dependency of PA to a huge extend and therefore is related to membrane potentials which play a crucial role in many processes in living cells. Chapter 3 sums up findings, which depict that binding partners of PA share certain common motives. These could be detected in a broad range of substrates, ranging from simple ions in an electrolyte over small molecules to complex protein effectors. The gathered information could be further used to design blocker-substrates for treatment of Anthrax infections or tags, which render PA possible as a molecular syringe for cargo proteins. The deeper insight to homologies and differences of binary toxin components is the core of chapter 4, in which the cross-reactivity of Anthrax and C2-toxin was analyzed. The presented results lead to a better understanding of different motives involved in binding and translocation to and via the B components PA and C2II, as well as the enzymatically active A moieties edema factor (EF), lethal factor (LF) and C2I. In the second part of the thesis, the blockage of intoxication is the center of interest. Therefore, chapter 5 focuses on the analysis of specially designed blocker-substrate molecules for PA. These molecules form a plug in the pore, abolishing translocation of the enzymatic units. Especially, if multi-resistant strains of Anthrax (said to be already produced in Russia as a biological weapon) are taken into consideration, these substrates could stop intoxication and buy time, to deal with the infection. Chapter 6 describes the blockage of PA-channels by anti-His antibody from the trans-side of the porin, an effect which was not described for any other antibody before. Interestingly, even mutation of the estimated target amino acid Histidine 310 to Glycine could not interfere with this ionic strength dependent binding.}, subject = {Bacillus anthracis}, language = {en} }