@article{KohlmorgenEliasSchoen2017, author = {Kohlmorgen, Britta and Elias, Johannes and Schoen, Christoph}, title = {Improved performance of the artus Mycobacterium tuberculosis RG PCR kit in a low incidence setting: a retrospective monocentric study}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {14127}, doi = {10.1038/s41598-017-14367-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159248}, year = {2017}, abstract = {Tuberculosis (TB) and the spread of Mycobacterium tuberculosis complex (MTBC) strains resistant against rifampin (RIF) and isoniazid (INH) pose a serious threat to global health. However, rapid and reliable MTBC detection along with RIF/INH susceptibility testing are challenging in low prevalence countries due to the higher rate of false positives. Here, we provide the first performance data for the artus MTBC PCR assay in a low prevalence setting. We analyze 1323 respiratory and 311 non-respiratory samples with the artus MTBC PCR assay as well as by mycobacterial culture and microscopy. We propose retesting of specimens in duplicate and consideration of a determined cycle-threshold value cut-off greater than 34, as this significantly increases accuracy, specificity, and negative predictive value without affecting sensitivity. Furthermore, we tested fourteen MTBC positive samples with the GenoType MTBDRplus test and demonstrate that using an identical DNA extraction protocol for both assays does not impair downstream genotypic testing for RIF and INH susceptibility. In conclusion, our procedure optimizes the use of the artus MTB assay with workload efficient methods in a low incidence setting. Combining the modified artus MTB with the GenoType MTBDRplus assays allows rapid and accurate detection of MTBC and RIF/INH resistance.}, language = {en} } @article{StijnisDijkmansBartetal.2015, author = {Stijnis, Kees and Dijkmans, Anneke C. and Bart, Aldert and Brosens, Lodewijk A. A. and Muntau, Birgit and Schoen, Christoph and Barth, Thomas F. and van Gulik, Thomas and van Gool, Tom and Grobusch, Martin P. and Tappe, Dennis}, title = {Echinococcus vogeli in Immigrant from Suriname to the Netherlands}, series = {Emerging Infectious Diseases}, volume = {21}, journal = {Emerging Infectious Diseases}, number = {3}, doi = {10.3201/eid2103.141205}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143953}, pages = {528-530}, year = {2015}, language = {en} } @article{TappeMeyerOesterleinetal.2011, author = {Tappe, Dennis and Meyer, Michael and Oesterlein, Anett and Jaye, Assan and Frosch, Matthias and Schoen, Christoph and Pantchev, Nikola}, title = {Transmission of Armillifer armillatus Ova at Snake Farm, The Gambia, West Africa}, series = {Emerging Infectious Diseases}, volume = {17}, journal = {Emerging Infectious Diseases}, number = {2}, doi = {10.3201/eid1702.101118}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142804}, pages = {251-254}, year = {2011}, abstract = {Visceral pentastomiasis caused by Armillifer armillatus larvae was diagnosed in 2 dogs in The Gambia. Parasites were subjected to PCR; phylogenetic analysis confirmed relatedness with branchiurans/crustaceans. Our investigation highlights transmission of infective A. armillatus ova to dogs and, by serologic evidence, also to 1 human, demonstrating a public health concern.}, language = {en} } @article{HeisigFrentzenBergmannetal.2011, author = {Heisig, Martin and Frentzen, Alexa and Bergmann, Birgit and Gentschev, Katharina Ivaylo and Hotz, Christian and Schoen, Christoph and Stritzker, Jochen and Fensterle, Joachim and Rapp, Ulf R. and Goebel, Werner}, title = {Specific antibody-receptor interactions trigger InlAB-independent uptake of Listeria monocytogenes into tumor cell lines}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68705}, year = {2011}, abstract = {Background: Specific cell targeting is an important, yet unsolved problem in bacteria-based therapeutic applications, like tumor or gene therapy. Here, we describe the construction of a novel, internalin A and B (InlAB)-deficient Listeria monocytogenes strain (Lm-spa+), which expresses protein A of Staphylococcus aureus (SPA) and anchors SPA in the correct orientation on the bacterial cell surface. Results: This listerial strain efficiently binds antibodies allowing specific interaction of the bacterium with the target recognized by the antibody. Binding of Trastuzumab (Herceptin®) or Cetuximab (Erbitux®) to Lm-spa+, two clinically approved monoclonal antibodies directed against HER2/neu and EGFR/HER1, respectively, triggers InlABindependent internalization into non-phagocytic cancer cell lines overexpressing the respective receptors. Internalization, subsequent escape into the host cell cytosol and intracellular replication of these bacteria are as efficient as of the corresponding InlAB-positive, SPA-negative parental strain. This specific antibody/receptormediated internalization of Lm-spa+ is shown in the murine 4T1 tumor cell line, the isogenic 4T1-HER2 cell line as well as the human cancer cell lines SK-BR-3 and SK-OV-3. Importantly, this targeting approach is applicable in a xenograft mouse tumor model after crosslinking the antibody to SPA on the listerial cell surface. Conclusions: Binding of receptor-specific antibodies to SPA-expressing L. monocytogenes may represent a promising approach to target L. monocytogenes to host cells expressing specific receptors triggering internalization.}, subject = {Listeria monocytogenes}, language = {en} } @article{BijuSchwarzLinkeetal.2011, author = {Biju, Joseph and Schwarz, Roland and Linke, Burkhard and Blom, Jochen and Becker, Anke and Claus, Heike and Goesmann, Alexander and Frosch, Matthias and M{\"u}ller, Tobias and Vogel, Ulrich and Schoen, Christoph}, title = {Virulence Evolution of the Human Pathogen Neisseria meningitidis by Recombination in the Core and Accessory Genome}, series = {PLoS One}, volume = {6}, journal = {PLoS One}, number = {4}, doi = {10.1371/journal.pone.0018441}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137960}, pages = {e18441}, year = {2011}, abstract = {Background Neisseria meningitidis is a naturally transformable, facultative pathogen colonizing the human nasopharynx. Here, we analyze on a genome-wide level the impact of recombination on gene-complement diversity and virulence evolution in N. meningitidis. We combined comparative genome hybridization using microarrays (mCGH) and multilocus sequence typing (MLST) of 29 meningococcal isolates with computational comparison of a subset of seven meningococcal genome sequences. Principal Findings We found that lateral gene transfer of minimal mobile elements as well as prophages are major forces shaping meningococcal population structure. Extensive gene content comparison revealed novel associations of virulence with genetic elements besides the recently discovered meningococcal disease associated (MDA) island. In particular, we identified an association of virulence with a recently described canonical genomic island termed IHT-E and a differential distribution of genes encoding RTX toxin- and two-partner secretion systems among hyperinvasive and non-hyperinvasive lineages. By computationally screening also the core genome for signs of recombination, we provided evidence that about 40\% of the meningococcal core genes are affected by recombination primarily within metabolic genes as well as genes involved in DNA replication and repair. By comparison with the results of previous mCGH studies, our data indicated that genetic structuring as revealed by mCGH is stable over time and highly similar for isolates from different geographic origins. Conclusions Recombination comprising lateral transfer of entire genes as well as homologous intragenic recombination has a profound impact on meningococcal population structure and genome composition. Our data support the hypothesis that meningococcal virulence is polygenic in nature and that differences in metabolism might contribute to virulence.}, language = {en} } @article{SchoenKischkiesEliasetal.2014, author = {Schoen, Christoph and Kischkies, Laura and Elias, Johannes and Ampattu, Biju Joseph}, title = {Metabolism and virulence in Neisseria meningitidis}, doi = {10.3389/fcimb.2014.00114}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113118}, year = {2014}, abstract = {A longstanding question in infection biology addresses the genetic basis for invasive behavior in commensal pathogens. A prime example for such a pathogen is Neisseria meningitidis. On the one hand it is a harmless commensal bacterium exquisitely adapted to humans, and on the other hand it sometimes behaves like a ferocious pathogen causing potentially lethal disease such as sepsis and acute bacterial meningitis. Despite the lack of a classical repertoire of virulence genes in N. meningitidis separating commensal from invasive strains, molecular epidemiology suggests that carriage and invasive strains belong to genetically distinct populations. In recent years, it has become increasingly clear that metabolic adaptation enables meningococci to exploit host resources, supporting the concept of nutritional virulence as a crucial determinant of invasive capability. Here, we discuss the contribution of core metabolic pathways in the context of colonization and invasion with special emphasis on results from genome-wide surveys. The metabolism of lactate, the oxidative stress response, and, in particular, glutathione metabolism as well as the denitrification pathway provide examples of how meningococcal metabolism is intimately linked to pathogenesis. We further discuss evidence from genome-wide approaches regarding potential metabolic differences between strains from hyperinvasive and carriage lineages and present new data assessing in vitro growth differences of strains from these two populations. We hypothesize that strains from carriage and hyperinvasive lineages differ in the expression of regulatory genes involved particularly in stress responses and amino acid metabolism under infection conditions.}, language = {en} } @article{MarincolaLiongSchoenetal.2021, author = {Marincola, Gabriella and Liong, Olivia and Schoen, Christoph and Abouelfetouh, Alaa and Hamdy, Aisha and Wencker, Freya D. R. and Marciniak, Tessa and Becker, Karsten and K{\"o}ck, Robin and Ziebuhr, Wilma}, title = {Antimicrobial Resistance Profiles of Coagulase-Negative Staphylococci in Community-Based Healthy Individuals in Germany}, series = {Frontiers in Public Health}, volume = {9}, journal = {Frontiers in Public Health}, issn = {2296-2565}, doi = {10.3389/fpubh.2021.684456}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240881}, year = {2021}, abstract = {Coagulase-negative staphylococci (CoNS) are common opportunistic pathogens, but also ubiquitous human and animal commensals. Infection-associated CoNS from healthcare environments are typically characterized by pronounced antimicrobial resistance (AMR) including both methicillin- and multidrug-resistant isolates. Less is known about AMR patterns of CoNS colonizing the general population. Here we report on AMR in commensal CoNS recovered from 117 non-hospitalized volunteers in a region of Germany with a high livestock density. Among the 69 individuals colonized with CoNS, 29 had reported contacts to either companion or farm animals. CoNS were selectively cultivated from nasal swabs, followed by species definition by 16S rDNA sequencing and routine antibiotic susceptibility testing. Isolates displaying phenotypic AMR were further tested by PCR for presence of selected AMR genes. A total of 127 CoNS were isolated and Staphylococcus epidermidis (75\%) was the most common CoNS species identified. Nine isolates (7\%) were methicillin-resistant (MR) and carried the mecA gene, with seven individuals (10\%) being colonized with at least one MR-CoNS isolate. While resistance against gentamicin, phenicols and spectinomycin was rare, high resistance rates were found against tetracycline (39\%), erythromycin (33\%) and fusidic acid (24\%). In the majority of isolates, phenotypic resistance could be associated with corresponding AMR gene detection. Multidrug-resistance (MDR) was observed in 23\% (29/127) of the isolates, with 33\% (23/69) of the individuals being colonized with MDR-CoNS. The combined data suggest that MR- and MDR-CoNS are present in the community, with previous animal contact not significantly influencing the risk of becoming colonized with such isolates.}, language = {en} } @article{AmpattuHagmannLiangetal.2017, author = {Ampattu, Biju Joseph and Hagmann, Laura and Liang, Chunguang and Dittrich, Marcus and Schl{\"u}ter, Andreas and Blom, Jochen and Krol, Elizaveta and Goesmann, Alexander and Becker, Anke and Dandekar, Thomas and M{\"u}ller, Tobias and Schoen, Christoph}, title = {Transcriptomic buffering of cryptic genetic variation contributes to meningococcal virulence}, series = {BMC Genomics}, volume = {18}, journal = {BMC Genomics}, number = {282}, doi = {10.1186/s12864-017-3616-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157534}, year = {2017}, abstract = {Background: Commensal bacteria like Neisseria meningitidis sometimes cause serious disease. However, genomic comparison of hyperinvasive and apathogenic lineages did not reveal unambiguous hints towards indispensable virulence factors. Here, in a systems biological approach we compared gene expression of the invasive strain MC58 and the carriage strain α522 under different ex vivo conditions mimicking commensal and virulence compartments to assess the strain-specific impact of gene regulation on meningococcal virulence. Results: Despite indistinguishable ex vivo phenotypes, both strains differed in the expression of over 500 genes under infection mimicking conditions. These differences comprised in particular metabolic and information processing genes as well as genes known to be involved in host-damage such as the nitrite reductase and numerous LOS biosynthesis genes. A model based analysis of the transcriptomic differences in human blood suggested ensuing metabolic flux differences in energy, glutamine and cysteine metabolic pathways along with differences in the activation of the stringent response in both strains. In support of the computational findings, experimental analyses revealed differences in cysteine and glutamine auxotrophy in both strains as well as a strain and condition dependent essentiality of the (p)ppGpp synthetase gene relA and of a short non-coding AT-rich repeat element in its promoter region. Conclusions: Our data suggest that meningococcal virulence is linked to transcriptional buffering of cryptic genetic variation in metabolic genes including global stress responses. They further highlight the role of regulatory elements for bacterial virulence and the limitations of model strain approaches when studying such genetically diverse species as N. meningitidis.}, language = {en} } @article{KlughammerDittrichBlometal.2017, author = {Klughammer, Johanna and Dittrich, Marcus and Blom, Jochen and Mitesser, Vera and Vogel, Ulrich and Frosch, Matthias and Goesmann, Alexander and M{\"u}ller, Tobias and Schoen, Christoph}, title = {Comparative genome sequencing reveals within-host genetic changes in Neisseria meningitidis during invasive disease}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0169892}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159547}, pages = {e0169892}, year = {2017}, abstract = {Some members of the physiological human microbiome occasionally cause life-threatening disease even in immunocompetent individuals. A prime example of such a commensal pathogen is Neisseria meningitidis, which normally resides in the human nasopharynx but is also a leading cause of sepsis and epidemic meningitis. Using N. meningitidis as model organism, we tested the hypothesis that virulence of commensal pathogens is a consequence of within host evolution and selection of invasive variants due to mutations at contingency genes, a mechanism called phase variation. In line with the hypothesis that phase variation evolved as an adaptation to colonize diverse hosts, computational comparisons of all 27 to date completely sequenced and annotated meningococcal genomes retrieved from public databases showed that contingency genes are indeed enriched for genes involved in host interactions. To assess within-host genetic changes in meningococci, we further used ultra-deep whole-genome sequencing of throat-blood strain pairs isolated from four patients suffering from invasive meningococcal disease. We detected up to three mutations per strain pair, affecting predominantly contingency genes involved in type IV pilus biogenesis. However, there was not a single (set) of mutation(s) that could invariably be found in all four pairs of strains. Phenotypic assays further showed that these genetic changes were generally not associated with increased serum resistance, higher fitness in human blood ex vivo or differences in the interaction with human epithelial and endothelial cells in vitro. In conclusion, we hypothesize that virulence of meningococci results from accidental emergence of invasive variants during carriage and without within host evolution of invasive phenotypes during disease progression in vivo.}, language = {en} } @article{BauriedlGerovacHeidrichetal.2020, author = {Bauriedl, Saskia and Gerovac, Milan and Heidrich, Nadja and Bischler, Thorsten and Barquist, Lars and Vogel, J{\"o}rg and Schoen, Christoph}, title = {The minimal meningococcal ProQ protein has an intrinsic capacity for structure-based global RNA recognition}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-16650-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230040}, year = {2020}, abstract = {FinO-domain proteins are a widespread family of bacterial RNA-binding proteins with regulatory functions. Their target spectrum ranges from a single RNA pair, in the case of plasmid-encoded FinO, to global RNA regulons, as with enterobacterial ProQ. To assess whether the FinO domain itself is intrinsically selective or promiscuous, we determine in vivo targets of Neisseria meningitidis, which consists of solely a FinO domain. UV-CLIP-seq identifies associations with 16 small non-coding sRNAs and 166 mRNAs. Meningococcal ProQ predominantly binds to highly structured regions and generally acts to stabilize its RNA targets. Loss of ProQ alters transcript levels of >250 genes, demonstrating that this minimal ProQ protein impacts gene expression globally. Phenotypic analyses indicate that ProQ promotes oxidative stress resistance and DNA damage repair. We conclude that FinO domain proteins recognize some abundant type of RNA shape and evolve RNA binding selectivity through acquisition of additional regions that constrain target recognition. FinO-domain proteins are bacterial RNA-binding proteins with a wide range of target specificities. Here, the authors employ UV CLIP-seq and show that minimal ProQ protein of Neisseria meningitidis binds to various small non-coding RNAs and mRNAs involved in virulence.}, language = {en} }