@article{BousquetAntoBachertetal.2021, author = {Bousquet, Jean and Anto, Josep M. and Bachert, Claus and Haahtela, Tari and Zuberbier, Torsten and Czarlewski, Wienczyslawa and Bedbrook, Anna and Bosnic-Anticevich, Sinthia and Walter Canonica, G. and Cardona, Victoria and Costa, Elisio and Cruz, Alvaro A. and Erhola, Marina and Fokkens, Wytske J. and Fonseca, Joao A. and Illario, Maddalena and Ivancevich, Juan-Carlos and Jutel, Marek and Klimek, Ludger and Kuna, Piotr and Kvedariene, Violeta and Le, LTT and Larenas-Linnemann, D{\´e}sir{\´e}e E. and Laune, Daniel and Louren{\c{c}}o, Olga M. and Mel{\´e}n, Erik and Mullol, Joaquim and Niedoszytko, Marek and Odemyr, Mika{\"e}la and Okamoto, Yoshitaka and Papadopoulos, Nikos G. and Patella, Vincenzo and Pfaar, Oliver and Pham-Thi, Nh{\^a}n and Rolland, Christine and Samolinski, Boleslaw and Sheikh, Aziz and Sofiev, Mikhail and Suppli Ulrik, Charlotte and Todo-Bom, Ana and Tomazic, Peter-Valentin and Toppila-Salmi, Sanna and Tsiligianni, Ioanna and Valiulis, Arunas and Valovirta, Erkka and Ventura, Maria-Teresa and Walker, Samantha and Williams, Sian and Yorgancioglu, Arzu and Agache, Ioana and Akdis, Cezmi A. and Almeida, Rute and Ansotegui, Ignacio J. and Annesi-Maesano, Isabella and Arnavielhe, Sylvie and Basaga{\~n}a, Xavier and D. Bateman, Eric and B{\´e}dard, Annabelle and Bedolla-Barajas, Martin and Becker, Sven and Bennoor, Kazi S. and Benveniste, Samuel and Bergmann, Karl C. and Bewick, Michael and Bialek, Slawomir and E. Billo, Nils and Bindslev-Jensen, Carsten and Bjermer, Leif and Blain, Hubert and Bonini, Matteo and Bonniaud, Philippe and Bosse, Isabelle and Bouchard, Jacques and Boulet, Louis-Philippe and Bourret, Rodolphe and Boussery, Koen and Braido, Fluvio and Briedis, Vitalis and Briggs, Andrew and Brightling, Christopher E. and Brozek, Jan and Brusselle, Guy and Brussino, Luisa and Buhl, Roland and Buonaiuto, Roland and Calderon, Moises A. and Camargos, Paulo and Camuzat, Thierry and Caraballo, Luis and Carriazo, Ana-Maria and Carr, Warner and Cartier, Christine and Casale, Thomas and Cecchi, Lorenzo and Cepeda Sarabia, Alfonso M. and H. Chavannes, Niels and Chkhartishvili, Ekaterine and Chu, Derek K. and Cingi, Cemal and Correia de Sousa, Jaime and Costa, David J. and Courbis, Anne-Lise and Custovic, Adnan and Cvetkosvki, Biljana and D'Amato, Gennaro and da Silva, Jane and Dantas, Carina and Dokic, Dejan and Dauvilliers, Yves and De Feo, Giulia and De Vries, Govert and Devillier, Philippe and Di Capua, Stefania and Dray, Gerard and Dubakiene, Ruta and Durham, Stephen R. and Dykewicz, Mark and Ebisawa, Motohiro and Gaga, Mina and El-Gamal, Yehia and Heffler, Enrico and Emuzyte, Regina and Farrell, John and Fauquert, Jean-Luc and Fiocchi, Alessandro and Fink-Wagner, Antje and Fontaine, Jean-Fran{\c{c}}ois and Fuentes Perez, Jos{\´e} M. and Gemicioğlu, Bilun and Gamkrelidze, Amiran and Garcia-Aymerich, Judith and Gevaert, Philippe and Gomez, Ren{\´e} Maximiliano and Gonz{\´a}lez Diaz, Sandra and Gotua, Maia and Guldemond, Nick A. and Guzm{\´a}n, Maria-Antonieta and Hajjam, Jawad and Huerta Villalobos, Yunuen R. and Humbert, Marc and Iaccarino, Guido and Ierodiakonou, Despo and Iinuma, Tomohisa and Jassem, Ewa and Joos, Guy and Jung, Ki-Suck and Kaidashev, Igor and Kalayci, Omer and Kardas, Przemyslaw and Keil, Thomas and Khaitov, Musa and Khaltaev, Nikolai and Kleine-Tebbe, Jorg and Kouznetsov, Rostislav and Kowalski, Marek L. and Kritikos, Vicky and Kull, Inger and La Grutta, Stefania and Leonardini, Lisa and Ljungberg, Henrik and Lieberman, Philip and Lipworth, Brian and Lodrup Carlsen, Karin C. and Lopes-Pereira, Catarina and Loureiro, Claudia C. and Louis, Renaud and Mair, Alpana and Mahboub, Bassam and Makris, Micha{\"e}l and Malva, Joao and Manning, Patrick and Marshall, Gailen D. and Masjedi, Mohamed R. and Maspero, Jorge F. and Carreiro-Martins, Pedro and Makela, Mika and Mathieu-Dupas, Eve and Maurer, Marcus and De Manuel Keenoy, Esteban and Melo-Gomes, Elisabete and Meltzer, Eli O. and Menditto, Enrica and Mercier, Jacques and Micheli, Yann and Miculinic, Neven and Mihaltan, Florin and Milenkovic, Branislava and Mitsias, Dimitirios I. and Moda, Giuliana and Mogica-Martinez, Maria-Dolores and Mohammad, Yousser and Montefort, Steve and Monti, Ricardo and Morais-Almeida, Mario and M{\"o}sges, Ralph and M{\"u}nter, Lars and Muraro, Antonella and Murray, Ruth and Naclerio, Robert and Napoli, Luigi and Namazova-Baranova, Leyla and Neffen, Hugo and Nekam, Kristoff and Neou, Angelo and Nordlund, Bj{\"o}rn and Novellino, Ettore and Nyembue, Dieudonn{\´e} and O'Hehir, Robyn and Ohta, Ken and Okubo, Kimi and Onorato, Gabrielle L. and Orlando, Valentina and Ouedraogo, Solange and Palamarchuk, Julia and Pali-Sch{\"o}ll, Isabella and Panzner, Peter and Park, Hae-Sim and Passalacqua, Gianni and P{\´e}pin, Jean-Louis and Paulino, Ema and Pawankar, Ruby and Phillips, Jim and Picard, Robert and Pinnock, Hilary and Plavec, Davor and Popov, Todor A. and Portejoie, Fabienne and Price, David and Prokopakis, Emmanuel P. and Psarros, Fotis and Pugin, Benoit and Puggioni, Francesca and Quinones-Delgado, Pablo and Raciborski, Filip and Rajabian-S{\"o}derlund, Rojin and Regateiro, Frederico S. and Reitsma, Sietze and Rivero-Yeverino, Daniela and Roberts, Graham and Roche, Nicolas and Rodriguez-Zagal, Erendira and Rolland, Christine and Roller-Wirnsberger, Regina E. and Rosario, Nelson and Romano, Antonino and Rottem, Menachem and Ryan, Dermot and Salim{\"a}ki, Johanna and Sanchez-Borges, Mario M. and Sastre, Joaquin and Scadding, Glenis K. and Scheire, Sophie and Schmid-Grendelmeier, Peter and Sch{\"u}nemann, Holger J. and Sarquis Serpa, Faradiba and Shamji, Mohamed and Sisul, Juan-Carlos and Sofiev, Mikhail and Sol{\´e}, Dirceu and Somekh, David and Sooronbaev, Talant and Sova, Milan and Spertini, Fran{\c{c}}ois and Spranger, Otto and Stellato, Cristiana and Stelmach, Rafael and Thibaudon, Michel and To, Teresa and Toumi, Mondher and Usmani, Omar and Valero, Antonio A. and Valenta, Rudolph and Valentin-Rostan, Marylin and Pereira, Marilyn Urrutia and van der Kleij, Rianne and Van Eerd, Michiel and Vandenplas, Olivier and Vasankari, Tuula and Vaz Carneiro, Antonio and Vezzani, Giorgio and Viart, Fr{\´e}d{\´e}ric and Viegi, Giovanni and Wallace, Dana and Wagenmann, Martin and Wang, De Yun and Waserman, Susan and Wickman, Magnus and Williams, Dennis M. and Wong, Gary and Wroczynski, Piotr and Yiallouros, Panayiotis K. and Yusuf, Osman M. and Zar, Heather J. and Zeng, St{\´e}phane and Zernotti, Mario E. and Zhang, Luo and Shan Zhong, Nan and Zidarn, Mihaela}, title = {ARIA digital anamorphosis: Digital transformation of health and care in airway diseases from research to practice}, series = {Allergy}, volume = {76}, journal = {Allergy}, number = {1}, doi = {10.1111/all.14422}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228339}, pages = {168 -- 190}, year = {2021}, abstract = {Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.}, language = {en} } @article{KochPetzoldWesselyetal.2021, author = {Koch, Elias A. T. and Petzold, Anne and Wessely, Anja and Dippel, Edgar and Gesierich, Anja and Gutzmer, Ralf and Hassel, Jessica C. and Haferkamp, Sebastian and Hohberger, Bettina and K{\"a}hler, Katharina C. and Knorr, Harald and Kreuzberg, Nicole and Leiter, Ulrike and Loquai, Carmen and Meier, Friedegund and Meissner, Markus and Mohr, Peter and Pf{\"o}hler, Claudia and Rahimi, Farnaz and Schadendorf, Dirk and Schell, Beatrice and Schlaak, Max and Terheyden, Patrick and Thoms, Kai-Martin and Schuler-Thurner, Beatrice and Ugurel, Selma and Ulrich, Jens and Utikal, Jochen and Weichenthal, Michael and Ziller, Fabian and Berking, Carola and Heppt, Markus}, title = {Immune checkpoint blockade for metastatic uveal melanoma: patterns of response and survival according to the presence of hepatic and extrahepatic metastasis}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {13}, issn = {2072-6694}, doi = {10.3390/cancers13133359}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242603}, year = {2021}, abstract = {Background: Since there is no standardized and effective treatment for advanced uveal melanoma (UM), the prognosis is dismal once metastases develop. Due to the availability of immune checkpoint blockade (ICB) in the real-world setting, the prognosis of metastatic UM has improved. However, it is unclear how the presence of hepatic and extrahepatic metastasis impacts the response and survival after ICB. Methods: A total of 178 patients with metastatic UM treated with ICB were included in this analysis. Patients were recruited from German skin cancer centers and the German national skin cancer registry (ADOReg). To investigate the impact of hepatic metastasis, two cohorts were compared: patients with liver metastasis only (cohort A, n = 55) versus those with both liver and extra-hepatic metastasis (cohort B, n = 123). Data were analyzed in both cohorts for response to treatment, progression-free survival (PFS), and overall survival (OS). The survival and progression probabilities were calculated with the Kaplan-Meier method. Log-rank tests, χ\(^2\) tests, and t-tests were performed to detect significant differences between both cohorts. Results: The median OS of the overall population was 16 months (95\% CI 13.4-23.7) and the median PFS, 2.8 months (95\% CI 2.5-3.0). The median OS was longer in cohort B than in cohort A (18.2 vs. 6.1 months; p = 0.071). The best objective response rate to dual ICB was 13.8\% and to anti-PD-1 monotherapy 8.9\% in the entire population. Patients with liver metastases only had a lower response to dual ICB, yet without significance (cohort A 8.7\% vs. cohort B 16.7\%; p = 0.45). Adverse events (AE) occurred in 41.6\%. Severe AE were observed in 26.3\% and evenly distributed between both cohorts. Conclusion: The survival of this large cohort of patients with advanced UM was more favorable than reported in previous benchmark studies. Patients with both hepatic and extrahepatic metastasis showed more favorable survival and higher response to dual ICB than those with hepatic metastasis only.}, language = {en} } @article{SchischlevskijCordtsGuentheretal.2021, author = {Schischlevskij, Pavel and Cordts, Isabell and G{\"u}nther, Ren{\´e} and Stolte, Benjamin and Zeller, Daniel and Schr{\"o}ter, Carsten and Weyen, Ute and Regensburger, Martin and Wolf, Joachim and Schneider, Ilka and Hermann, Andreas and Metelmann, Moritz and Kohl, Zacharias and Linker, Ralf A. and Koch, Jan Christoph and Stendel, Claudia and M{\"u}schen, Lars H. and Osmanovic, Alma and Binz, Camilla and Klopstock, Thomas and Dorst, Johannes and Ludolph, Albert C. and Boentert, Matthias and Hagenacker, Tim and Deschauer, Marcus and Lingor, Paul and Petri, Susanne and Schreiber-Katz, Olivia}, title = {Informal caregiving in amyotrophic lateral sclerosis (ALS): a high caregiver burden and drastic consequences on caregivers' lives}, series = {Brain Sciences}, volume = {11}, journal = {Brain Sciences}, number = {6}, issn = {2076-3425}, doi = {10.3390/brainsci11060748}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240981}, year = {2021}, abstract = {Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that causes progressive autonomy loss and need for care. This does not only affect patients themselves, but also the patients' informal caregivers (CGs) in their health, personal and professional lives. The big efforts of this multi-center study were not only to evaluate the caregivers' burden and to identify its predictors, but it also should provide a specific understanding of the needs of ALS patients' CGs and fill the gap of knowledge on their personal and work lives. Using standardized questionnaires, primary data from patients and their main informal CGs (n = 249) were collected. Patients' functional status and disease severity were evaluated using the Barthel Index, the revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) and the King's Stages for ALS. The caregivers' burden was recorded by the Zarit Burden Interview (ZBI). Comorbid anxiety and depression of caregivers were assessed by the Hospital Anxiety and Depression Scale. Additionally, the EuroQol Five Dimension Five Level Scale evaluated their health-related quality of life. The caregivers' burden was high (mean ZBI = 26/88, 0 = no burden, ≥24 = highly burdened) and correlated with patients' functional status (r\(_p\) = -0.555, p < 0.001, n = 242). It was influenced by the CGs' own mental health issues due to caregiving (+11.36, 95\% CI [6.84; 15.87], p < 0.001), patients' wheelchair dependency (+9.30, 95\% CI [5.94; 12.66], p < 0.001) and was interrelated with the CGs' depression (r\(_p\) = 0.627, p < 0.001, n = 234), anxiety (r\(_p\) = 0.550, p < 0.001, n = 234), and poorer physical condition (r\(_p\) = -0.362, p < 0.001, n = 237). Moreover, female CGs showed symptoms of anxiety more often, which also correlated with the patients' impairment in daily routine (r\(_s\) = -0.280, p < 0.001, n = 169). As increasing disease severity, along with decreasing autonomy, was the main predictor of caregiver burden and showed to create relevant (negative) implications on CGs' lives, patient care and supportive therapies should address this issue. Moreover, in order to preserve the mental and physical health of the CGs, new concepts of care have to focus on both, on not only patients but also their CGs and gender-associated specific issues. As caregiving in ALS also significantly influences the socioeconomic status by restrictions in CGs' work lives and income, and the main reported needs being lack of psychological support and a high bureaucracy, the situation of CGs needs more attention. Apart from their own multi-disciplinary medical and psychological care, more support in care and patient management issues is required.}, language = {en} } @article{KochPetzoldWesselyetal.2022, author = {Koch, Elias A. T. and Petzold, Anne and Wessely, Anja and Dippel, Edgar and Gesierich, Anja and Gutzmer, Ralf and Hassel, Jessica C. and Haferkamp, Sebastian and K{\"a}hler, Katharina C. and Knorr, Harald and Kreuzberg, Nicole and Leiter, Ulrike and Loquai, Carmen and Meier, Friedegund and Meissner, Markus and Mohr, Peter and Pf{\"o}hler, Claudia and Rahimi, Farnaz and Schadendorf, Dirk and Schell, Beatrice and Schlaak, Max and Terheyden, Patrick and Thoms, Kai-Martin and Schuler-Thurner, Beatrice and Ugurel, Selma and Ulrich, Jens and Utikal, Jochen and Weichenthal, Michael and Ziller, Fabian and Berking, Carola and Heppt, Markus V.}, title = {Immune checkpoint blockade for metastatic uveal melanoma: re-induction following resistance or toxicity}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {3}, issn = {2072-6694}, doi = {10.3390/cancers14030518}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254814}, year = {2022}, abstract = {Re-induction with immune checkpoint blockade (ICB) needs to be considered in many patients with uveal melanoma (UM) due to limited systemic treatment options. Here, we provide hitherto the first analysis of ICB re-induction in UM. A total of 177 patients with metastatic UM treated with ICB were included from German skin cancer centers and the German national skin cancer registry (ADOReg). To investigate the impact of ICB re-induction, two cohorts were compared: patients who received at least one ICB re-induction (cohort A, n = 52) versus those who received only one treatment line of ICB (cohort B, n = 125). In cohort A, a transient benefit of overall survival (OS) was observed at 6 and 12 months after the treatment start of ICB. There was no significant difference in OS between both groups (p = 0.1) with a median OS of 16.2 months (cohort A, 95\% CI: 11.1-23.8) versus 9.4 months (cohort B, 95\% CI: 6.1-14.9). Patients receiving re-induction of ICB (cohort A) had similar response rates compared to those receiving ICB once. Re-induction of ICB may yield a clinical benefit for a small subgroup of patients even after resistance or development of toxicities.}, language = {en} } @article{VedderLensMartinetal.2022, author = {Vedder, Daniel and Lens, Luc and Martin, Claudia A. and Pellikka, Petri and Adhikari, Hari and Heiskanen, Janne and Engler, Jan O. and Sarmento Cabral, Juliano}, title = {Hybridization may aid evolutionary rescue of an endangered East African passerine}, series = {Evolutionary Applications}, volume = {15}, journal = {Evolutionary Applications}, number = {7}, doi = {10.1111/eva.13440}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287264}, pages = {1177-1188}, year = {2022}, abstract = {Abstract Introgressive hybridization is a process that enables gene flow across species barriers through the backcrossing of hybrids into a parent population. This may make genetic material, potentially including relevant environmental adaptations, rapidly available in a gene pool. Consequently, it has been postulated to be an important mechanism for enabling evolutionary rescue, that is the recovery of threatened populations through rapid evolutionary adaptation to novel environments. However, predicting the likelihood of such evolutionary rescue for individual species remains challenging. Here, we use the example of Zosterops silvanus, an endangered East African highland bird species suffering from severe habitat loss and fragmentation, to investigate whether hybridization with its congener Zosterops flavilateralis might enable evolutionary rescue of its Taita Hills population. To do so, we employ an empirically parameterized individual-based model to simulate the species' behaviour, physiology and genetics. We test the population's response to different assumptions of mating behaviour and multiple scenarios of habitat change. We show that as long as hybridization does take place, evolutionary rescue of Z. silvanus is likely. Intermediate hybridization rates enable the greatest long-term population growth, due to trade-offs between adaptive and maladaptive introgressed alleles. Habitat change did not have a strong effect on population growth rates, as Z. silvanus is a strong disperser and landscape configuration is therefore not the limiting factor for hybridization. Our results show that targeted gene flow may be a promising avenue to help accelerate the adaptation of endangered species to novel environments, and demonstrate how to combine empirical research and mechanistic modelling to deliver species-specific predictions for conservation planning.}, language = {en} }