@article{RamlerPoaterHirschetal.2019, author = {Ramler, Jacqueline and Poater, Jordi and Hirsch, Florian and Ritschel, Benedikt and Fischer, Ingo and Bickelhaupt, F. Matthias and Lichtenberg, Crispin}, title = {Carbon monoxide insertion at a heavy p-block element: unprecedented formation of a cationic bismuth carbamoyl}, series = {Chemical Science}, volume = {10}, journal = {Chemical Science}, doi = {10.1039/C9SC00278B}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181627}, pages = {4169 - 4176}, year = {2019}, abstract = {Major advances in the chemistry of 5th and 6th row heavy p-block element compounds have recently uncovered intriguing reactivity patterns towards small molecules such as H\(_2\), CO\(_2\), and ethylene. However, well-defined, homogeneous insertion reactions with carbon monoxide, one of the benchmark substrates in this field, have not been reported to date. We demonstrate here, that a cationic bismuth amide undergoes facile insertion of CO into the Bi-N bond under mild conditions. This approach grants direct access to the first cationic bismuth carbamoyl species. Its characterization by NMR, IR, and UV/vis spectroscopy, elemental analysis, single-crystal X-ray analysis, cyclic voltammetry, and DFT calculations revealed intriguing properties, such as a reversible electron transfer at the bismuth center and an absorption feature at 353 nm ascribed to a transition involving σ- and π-type orbitals of the bismuth-carbamoyl functionality. A combined experimental and theoretical approach provided insight into the mechanism of CO insertion. The substrate scope could be extended to isonitriles.}, language = {en} } @article{MukhopadhyaySchleierWirsingetal.2020, author = {Mukhopadhyay, Deb Pratim and Schleier, Domenik and Wirsing, Sara and Ramler, Jaqueline and Kaiser, Dustin and Reusch, Engelbert and Hemberger, Patrick and Preitschopf, Tobias and Krummenacher, Ivo and Engels, Bernd and Fischer, Ingo and Lichtenberg, Crispin}, title = {Methylbismuth: an organometallic bismuthinidene biradical}, series = {Chemical Science}, volume = {11}, journal = {Chemical Science}, number = {29}, doi = {10.1039/D0SC02410D}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251657}, pages = {7562-7568}, year = {2020}, abstract = {We report the generation, spectroscopic characterization, and computational analysis of the first free (non-stabilized) organometallic bismuthinidene, BiMe. The title compound was generated in situ from BiMe\(_3\) by controlled homolytic Bi-C bond cleavage in the gas phase. Its electronic structure was characterized by a combination of photoion mass-selected threshold photoelectron spectroscopy and DFT as well as multi-reference computations. A triplet ground state was identified and an ionization energy (IE) of 7.88 eV was experimentally determined. Methyl abstraction from BiMe\(_3\) to give [BiMe(_2\)]• is a key step in the generation of BiMe. We reaveal a bond dissociation energy of 210 ± 7 kJ mol\(^{-1}\), which is substantially higher than the previously accepted value. Nevertheless, the homolytic cleavage of Me-BiMe\(_2\) bonds could be achieved at moderate temperatures (60-120 °C) in the condensed phase, suggesting that [BiMe\(_2\)]• and BiMe are accessible as reactive intermediates under these conditions.}, subject = {Photoelektronenspektroskopie}, language = {en} } @article{RamlerFantuzziGeistetal.2021, author = {Ramler, Jaqueline and Fantuzzi, Felipe and Geist, Felix and Hanft, Anna and Braunschweig, Holger and Engels, Bernd and Lichtenberg, Crispin}, title = {The dimethylbismuth cation: entry into dative Bi-Bi bonding and unconventional methyl exchange}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, doi = {10.1002/anie.202109545}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256543}, pages = {24388-24394}, year = {2021}, abstract = {The dimethyl bismuth cation, [BiMe\(_2\)(SbF\(_6\))], has been isolated and characterized. Reaction with BiMe\(_3\) allows access to the first compound featuring Bi→Bi donor-acceptor bonding. In solution, dynamic behavior with methyl exchange via an unusual S\(_E\)2 mechanism is observed, underlining the unique properties of bismuth species as soft Lewis acids with the ability to undergo reversible Bi-C bond cleavage.}, language = {en} }