@article{MooijvanWijkBeusenetal.2019, author = {Mooij, Wolf M and van Wijk, Dianneke and Beusen, Arthur HW and Brederveld, Robert J and Chang, Manqi and Cobben, Marleen MP and DeAngelis, Don L and Downing, Andrea S and Green, Pamela and Gsell, Alena S and Huttunen, Inese and Janse, Jan H and Janssen, Annette BG and Hengeveld, Geerten M and Kong, Xiangzhen and Kramer, Lilith and Kuiper, Jan J and Langan, Simon J and Nolet, Bart A and Nuijten, Rascha JM and Strokal, Maryna and Troost, Tineke A and van Dam, Anne A and Teurlincx, Sven}, title = {Modeling water quality in the Anthropocene: directions for the next-generation aquatic ecosystem models}, series = {Current Opinion in Environmental Sustainability}, volume = {36}, journal = {Current Opinion in Environmental Sustainability}, doi = {10.1016/j.cosust.2018.10.012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224173}, pages = {85-95}, year = {2019}, abstract = {"Everything changes and nothing stands still" (Heraclitus). Here we review three major improvements to freshwater aquatic ecosystem models — and ecological models in general — as water quality scenario analysis tools towards a sustainable future. To tackle the rapid and deeply connected dynamics characteristic of the Anthropocene, we argue for the inclusion of eco-evolutionary, novel ecosystem and social-ecological dynamics. These dynamics arise from adaptive responses in organisms and ecosystems to global environmental change and act at different integration levels and different time scales. We provide reasons and means to incorporate each improvement into aquatic ecosystem models. Throughout this study we refer to Lake Victoria as a microcosm of the evolving novel social-ecological systems of the Anthropocene. The Lake Victoria case clearly shows how interlinked eco-evolutionary, novel ecosystem and social-ecological dynamics are, and demonstrates the need for transdisciplinary research approaches towards global sustainability.}, language = {en} } @article{BeykanDamEberleinetal.2016, author = {Beykan, Seval and Dam, Jan S. and Eberlein, Uta and Kaufmann, Jens and Kj{\ae}rgaard, Benedict and J{\o}dal, Lars and Bouterfa, Hakim and Bejot, Romain and Lassmann, Michael and Jensen, Svend Borup}, title = {\(^{177}\)Lu-OPS201 targeting somatostatin receptors: in vivo biodistribution and dosimetry in a pig model}, series = {EJNMMI Research}, volume = {6}, journal = {EJNMMI Research}, number = {50}, doi = {10.1186/s13550-016-0204-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146888}, year = {2016}, abstract = {Background \(^{177}\)Lu is used in peptide receptor radionuclide therapies for the treatment of neuroendocrine tumors. Based on the recent literature, SST2 antagonists are superior to agonists in tumor uptake. The compound OPS201 is the novel somatostatin antagonist showing the highest SST2 affinity. The aim of this study was to measure the in vivo biodistribution and dosimetry of \(^{177}\)Lu-OPS201 in five anesthetized Danish Landrace pigs as an appropriate substitute for humans to quantitatively assess the absorbed doses for future clinical applications. Results \(^{177}\)Lu-OPS201 was obtained with a specific activity ranging from 10 to 17 MBq/μg. Prior to administration, the radiochemical purity was measured as s > 99.7 \% in all cases. After injection, fast clearance of the compound from the blood stream was observed. Less than 5 \% of the injected activity was presented in blood 10 min after injection. A series of SPECT/CT and whole-body scans conducted until 10 days after intravenous injection showed uptake mostly in the liver, spine, and kidneys. There was no visible uptake in the spleen. Blood samples were taken to determine the time-activity curve in the blood. Time-activity curves and time-integrated activity coefficients were calculated for the organs showing visible uptake. Based on these data, the absorbed organ dose coefficients for a 70-kg patient were calculated with OLINDA/EXM. For humans after an injection of 5 GBq \(^{177}\)Lu-OPS201, the highest predicted absorbed doses are obtained for the kidneys (13.7 Gy), the osteogenic cells (3.9 Gy), the urinary bladder wall (1.8 Gy), and the liver (1.0 Gy). No metabolites of 177Lu-OPS201 were found by radio HPLC analysis. None of the absorbed doses calculated will exceed organ toxicity levels. Conclusions The \(^{177}\)Lu-OPS201 was well tolerated and caused no abnormal physiological or behavioral signs. In vivo distributions and absorbed doses of pigs are comparable to those observed in other publications. According to the biodistribution data in pigs, presented in this work, the expected radiation exposure in humans will be within the acceptable range.}, language = {en} }