@article{BaurNietzerKunzetal.2020, author = {Baur, Florentin and Nietzer, Sarah L. and Kunz, Meik and Saal, Fabian and Jeromin, Julian and Matschos, Stephanie and Linnebacher, Michael and Walles, Heike and Dandekar, Thomas and Dandekar, Gudrun}, title = {Connecting cancer pathways to tumor engines: a stratification tool for colorectal cancer combining human in vitro tissue models with boolean in silico models}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {1}, issn = {2072-6694}, doi = {10.3390/cancers12010028}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193798}, pages = {28}, year = {2020}, abstract = {To improve and focus preclinical testing, we combine tumor models based on a decellularized tissue matrix with bioinformatics to stratify tumors according to stage-specific mutations that are linked to central cancer pathways. We generated tissue models with BRAF-mutant colorectal cancer (CRC) cells (HROC24 and HROC87) and compared treatment responses to two-dimensional (2D) cultures and xenografts. As the BRAF inhibitor vemurafenib is—in contrast to melanoma—not effective in CRC, we combined it with the EGFR inhibitor gefitinib. In general, our 3D models showed higher chemoresistance and in contrast to 2D a more active HGFR after gefitinib and combination-therapy. In xenograft models murine HGF could not activate the human HGFR, stressing the importance of the human microenvironment. In order to stratify patient groups for targeted treatment options in CRC, an in silico topology with different stages including mutations and changes in common signaling pathways was developed. We applied the established topology for in silico simulations to predict new therapeutic options for BRAF-mutated CRC patients in advanced stages. Our in silico tool connects genome information with a deeper understanding of tumor engines in clinically relevant signaling networks which goes beyond the consideration of single drivers to improve CRC patient stratification.}, language = {en} } @article{KannKunzHansenetal.2020, author = {Kann, Simone and Kunz, Meik and Hansen, Jessica and Sievertsen, J{\"u}rgen and Crespo, Jose J. and Loperena, Aristides and Arriens, Sandra and Dandekar, Thomas}, title = {Chagas disease: detection of Trypanosoma cruzi by a new, high-specific real time PCR}, series = {Journal of Clinical Medicine}, volume = {9}, journal = {Journal of Clinical Medicine}, number = {5}, issn = {2077-0383}, doi = {10.3390/jcm9051517}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205746}, year = {2020}, abstract = {Background: Chagas disease (CD) is a major burden in Latin America, expanding also to non-endemic countries. A gold standard to detect the CD causing pathogen Trypanosoma cruzi is currently not available. Existing real time polymerase chain reactions (RT-PCRs) lack sensitivity and/or specificity. We present a new, highly specific RT-PCR for the diagnosis and monitoring of CD. Material and Methods: We analyzed 352 serum samples from Indigenous people living in high endemic CD areas of Colombia using three leading RT-PCRs (k-DNA-, TCZ-, 18S rRNA-PCR), the newly developed one (NDO-PCR), a Rapid Test/enzyme-linked immuno sorbent assay (ELISA), and immunofluorescence. Eighty-seven PCR-products were verified by sequence analysis after plasmid vector preparation. Results: The NDO-PCR showed the highest sensitivity (92.3\%), specificity (100\%), and accuracy (94.3\%) for T. cruzi detection in the 87 sequenced samples. Sensitivities and specificities of the kDNA-PCR were 89.2\%/22.7\%, 20.5\%/100\% for TCZ-PCR, and 1.5\%/100\% for the 18S rRNA-PCR. The kDNA-PCR revealed a 77.3\% false positive rate, mostly due to cross-reactions with T. rangeli (NDO-PCR 0\%). TCZ- and 18S rRNA-PCR showed a false negative rate of 79.5\% and 98.5\% (NDO-PCR 7.7\%), respectively. Conclusions: The NDO-PCR demonstrated the highest specificity, sensitivity, and accuracy compared to leading PCRs. Together with serologic tests, it can be considered as a reliable tool for CD detection and can improve CD management significantly.}, language = {en} }