@article{ShityakovBencurovaFoersteretal.2020, author = {Shityakov, Sergey and Bencurova, Elena and F{\"o}rster, Carola and Dandekar, Thomas}, title = {Modeling of shotgun sequencing of DNA plasmids using experimental and theoretical approaches}, series = {BMC Bioinformatics}, volume = {2020}, journal = {BMC Bioinformatics}, doi = {10.1186/s12859-020-3461-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229169}, year = {2020}, abstract = {Background Processing and analysis of DNA sequences obtained from next-generation sequencing (NGS) face some difficulties in terms of the correct prediction of DNA sequencing outcomes without the implementation of bioinformatics approaches. However, algorithms based on NGS perform inefficiently due to the generation of long DNA fragments, the difficulty of assembling them and the complexity of the used genomes. On the other hand, the Sanger DNA sequencing method is still considered to be the most reliable; it is a reliable choice for virtual modeling to build all possible consensus sequences from smaller DNA fragments. Results In silico and in vitro experiments were conducted: (1) to implement and test our novel sequencing algorithm, using the standard cloning vectors of different length and (2) to validate experimentally virtual shotgun sequencing using the PCR technique with the number of cycles from 1 to 9 for each reaction. Conclusions We applied a novel algorithm based on Sanger methodology to correctly predict and emphasize the performance of DNA sequencing techniques as well as in de novo DNA sequencing and its further application in synthetic biology. We demonstrate the statistical significance of our results.}, language = {en} } @article{GuptaSrivastavaOsmanogluetal.2020, author = {Gupta, Shishir K. and Srivastava, Mugdha and Osmanoglu, Oezge and Dandekar, Thomas}, title = {Genome-wide inference of the Camponotus floridanus protein-protein interaction network using homologous mapping and interacting domain profile pairs}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-020-59344-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229406}, year = {2020}, abstract = {Apart from some model organisms, the interactome of most organisms is largely unidentified. High-throughput experimental techniques to determine protein-protein interactions (PPIs) are resource intensive and highly susceptible to noise. Computational methods of PPI determination can accelerate biological discovery by identifying the most promising interacting pairs of proteins and by assessing the reliability of identified PPIs. Here we present a first in-depth study describing a global view of the ant Camponotus floridanus interactome. Although several ant genomes have been sequenced in the last eight years, studies exploring and investigating PPIs in ants are lacking. Our study attempts to fill this gap and the presented interactome will also serve as a template for determining PPIs in other ants in future. Our C. floridanus interactome covers 51,866 non-redundant PPIs among 6,274 proteins, including 20,544 interactions supported by domain-domain interactions (DDIs), 13,640 interactions supported by DDIs and subcellular localization, and 10,834 high confidence interactions mediated by 3,289 proteins. These interactions involve and cover 30.6\% of the entire C. floridanus proteome.}, language = {en} } @unpublished{Dandekar2021, author = {Dandekar, Thomas}, title = {Our universe may have started by Qubit decoherence}, doi = {10.25972/OPUS-23918}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239181}, pages = {54}, year = {2021}, abstract = {Our universe may have started by Qubit decoherence: In quantum computers, qubits have all their states undefined during calculation and become defined as output ("decoherence"). We study the transition from an uncontrolled, chaotic quantum vacuum ("before") to a clearly interacting "real world". In such a cosmology, the Big Bang singularity is replaced by a condensation event of interacting strings. This triggers a crystallization process. This avoids inflation, not fitting current observations: increasing long-range interactions limit growth and crystal symmetries ensure the same laws of nature and basic symmetries over the whole crystal. Tiny mis-arrangements provide nuclei of superclusters and galaxies and crystal structure allows arrangement of dark (halo regions) and normal matter (galaxy nuclei) for galaxy formation. Crystals come and go: an evolutionary cosmology is explored: entropic forces from the quantum soup "outside" of the crystal try to dissolve it. This corresponds to dark energy and leads to a "big rip" in 70 Gigayears. Selection for best growth and condensation events over generations of crystals favors multiple self-organizing processes within the crystal including life or even conscious observers in our universe. Philosophically this theory shows harmony with nature and replaces absurd perspectives of current cosmology. Independent of cosmology, we suggest that a "real world" (so our everyday macroscopic world) happens only inside a crystal. "Outside" there is wild quantum foam and superposition of all possibilities. In our crystallized world the vacuum no longer boils but is cooled down by the crystallization event, space-time exists and general relativity holds. Vacuum energy becomes 10**20 smaller, exactly as observed in our everyday world. We live in a "solid" state, within a crystal, the n quanta which build our world have all their different m states nicely separated. There are only nm states available for this local "multiverse". The arrow of entropy for each edge of the crystal forms one fate, one world-line or clear development of our world, while layers of the crystal are different system states. Mathematical leads from loop quantum gravity (LQG) point to required interactions and potentials. Interaction potentials for strings or loop quanta of any dimension allow a solid, decoherent state of quanta challenging to calculate. However, if we introduce here the heuristic that any type of physical interaction of strings corresponds just to a type of calculation, there is already since 1898 the Hurwitz theorem showing that then only 1D, 2D, 4D and 8D (octonions) allow complex or hypercomplex number calculations. No other hypercomplex numbers and hence dimensions or symmetries are possible to allow calculations without yielding divisions by zero. However, the richest solution allowed by the Hurwitz theorem, octonions, is actually the observed symmetry of our universe, E8. Standard physics such as condensation, crystallization and magnetization but also solid-state physics and quantum computing allow us to show an initial mathematical treatment of our new theory by LQG to describe the cosmological state transformations by equations, and, most importantly, point out routes to parametrization of free parameters looking at testable phenomena, experiments and formulas that describe processes of crystallization, protein folding, magnetization, solid-state physics and quantum computing. This is presented here for LQG, for string theory it would be more elegant but was too demanding to be shown here. Note: While my previous Opus server preprint "A new cosmology of a crystallization process (decoherence) from the surrounding quantum soup provides heuristics to unify general relativity and quantum physics by solid state physics" (https://doi.org/10.25972/OPUS-23076) deals with the same topics and basic formulas, this new version is improved: clearer in title, better introduction, more stringent in its mathematics and improved discussion of the implications including quantum computing, hints for parametrization and connections to LQG and other current cosmological efforts. This 5th of June 2021 version is again an OPUS preprint, but this will next be edited for Archives https://arxiv.org.}, language = {en} } @article{GuptaSrivastavaMinochaetal.2021, author = {Gupta, Shishir K. and Srivastava, Mugdha and Minocha, Rashmi and Akash, Aman and Dangwal, Seema and Dandekar, Thomas}, title = {Alveolar regeneration in COVID-19 patients: a network perspective}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {20}, issn = {1422-0067}, doi = {10.3390/ijms222011279}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284307}, year = {2021}, abstract = {A viral infection involves entry and replication of viral nucleic acid in a host organism, subsequently leading to biochemical and structural alterations in the host cell. In the case of SARS-CoV-2 viral infection, over-activation of the host immune system may lead to lung damage. Albeit the regeneration and fibrotic repair processes being the two protective host responses, prolonged injury may lead to excessive fibrosis, a pathological state that can result in lung collapse. In this review, we discuss regeneration and fibrosis processes in response to SARS-CoV-2 and provide our viewpoint on the triggering of alveolar regeneration in coronavirus disease 2019 (COVID-19) patients.}, language = {en} } @article{LiangRiosMiguelJaricketal.2021, author = {Liang, Chunguang and Rios-Miguel, Ana B. and Jarick, Marcel and Neurgaonkar, Priya and Girard, Myriam and Fran{\c{c}}ois, Patrice and Schrenzel, Jacques and Ibrahim, Eslam S. and Ohlsen, Knut and Dandekar, Thomas}, title = {Staphylococcus aureus transcriptome data and metabolic modelling investigate the interplay of Ser/Thr kinase PknB, its phosphatase Stp, the glmR/yvcK regulon and the cdaA operon for metabolic adaptation}, series = {Microorganisms}, volume = {9}, journal = {Microorganisms}, number = {10}, issn = {2076-2607}, doi = {10.3390/microorganisms9102148}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248459}, year = {2021}, abstract = {Serine/threonine kinase PknB and its corresponding phosphatase Stp are important regulators of many cell functions in the pathogen S. aureus. Genome-scale gene expression data of S. aureus strain NewHG (sigB\(^+\)) elucidated their effect on physiological functions. Moreover, metabolic modelling from these data inferred metabolic adaptations. We compared wild-type to deletion strains lacking pknB, stp or both. Ser/Thr phosphorylation of target proteins by PknB switched amino acid catabolism off and gluconeogenesis on to provide the cell with sufficient components. We revealed a significant impact of PknB and Stp on peptidoglycan, nucleotide and aromatic amino acid synthesis, as well as catabolism involving aspartate transaminase. Moreover, pyrimidine synthesis was dramatically impaired by stp deletion but only slightly by functional loss of PknB. In double knockouts, higher activity concerned genes involved in peptidoglycan, purine and aromatic amino acid synthesis from glucose but lower activity of pyrimidine synthesis from glucose compared to the wild type. A second transcriptome dataset from S. aureus NCTC 8325 (sigB\(^-\)) validated the predictions. For this metabolic adaptation, PknB was found to interact with CdaA and the yvcK/glmR regulon. The involved GlmR structure and the GlmS riboswitch were modelled. Furthermore, PknB phosphorylation lowered the expression of many virulence factors, and the study shed light on S. aureus infection processes.}, language = {en} } @article{LiangBencurovaPsotaetal.2021, author = {Liang, Chunguang and Bencurova, Elena and Psota, Eric and Neurgaonkar, Priya and Prelog, Martina and Scheller, Carsten and Dandekar, Thomas}, title = {Population-predicted MHC class II epitope presentation of SARS-CoV-2 structural proteins correlates to the case fatality rates of COVID-19 in different countries}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {5}, issn = {1422-0067}, doi = {10.3390/ijms22052630}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258936}, year = {2021}, abstract = {We observed substantial differences in predicted Major Histocompatibility Complex II (MHCII) epitope presentation of SARS-CoV-2 proteins for different populations but only minor differences in predicted MHCI epitope presentation. A comparison of this predicted epitope MHC-coverage revealed for the early phase of infection spread (till day 15 after reaching 128 observed infection cases) highly significant negative correlations with the case fatality rate. Specifically, this was observed in different populations for MHC class II presentation of the viral spike protein (p-value: 0.0733 for linear regression), the envelope protein (p-value: 0.023), and the membrane protein (p-value: 0.00053), indicating that the high case fatality rates of COVID-19 observed in some countries seem to be related with poor MHC class II presentation and hence weak adaptive immune response against these viral envelope proteins. Our results highlight the general importance of the SARS-CoV-2 structural proteins in immunological control in early infection spread looking at a global census in various countries and taking case fatality rate into account. Other factors such as health system and control measures become more important after the early spread. Our study should encourage further studies on MHCII alleles as potential risk factors in COVID-19 including assessment of local populations and specific allele distributions.}, language = {en} } @article{DandekarBencurovaOsmanogluetal.2021, author = {Dandekar, Thomas and Bencurova, Elena and Osmanoglu, {\"O}zge and Naseem, Muhammad}, title = {Klimapflanzen und biologische Wege zu negativen Kohlendioxidemissionen}, series = {BIOspektrum}, volume = {27}, journal = {BIOspektrum}, number = {7}, issn = {1868-6249}, doi = {10.1007/s12268-021-1677-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270067}, pages = {769-772}, year = {2021}, abstract = {Climate plants are critical to prevent global warming as all efforts to save carbon dioxide are too slow and climate disasters on the rise. For best carbon dioxide harvesting we compare algae, trees and crop plants and use metagenomic analysis of environmental samples. We compare different pathways, carbon harvesting potentials of different plants as well as synthetic modifications including carbon dioxide flux balance analysis. For implementation, agriculture and modern forestry are important.}, language = {de} } @article{OthmanFathyBekhitetal.2021, author = {Othman, Eman M. and Fathy, Moustafa and Bekhit, Amany Abdlrehim and Abdel-Razik, Abdel-Razik H. and Jamal, Arshad and Nazzal, Yousef and Shams, Shabana and Dandekar, Thomas and Naseem, Muhammad}, title = {Modulatory and toxicological perspectives on the effects of the small molecule kinetin}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {3}, issn = {1420-3049}, doi = {10.3390/molecules26030670}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223064}, year = {2021}, abstract = {Plant hormones are small regulatory molecules that exert pharmacological actions in mammalian cells such as anti-oxidative and pro-metabolic effects. Kinetin belongs to the group of plant hormones cytokinin and has been associated with modulatory functions in mammalian cells. The mammalian adenosine receptor (A2a-R) is known to modulate multiple physiological responses in animal cells. Here, we describe that kinetin binds to the adenosine receptor (A2a-R) through the Asn253 residue in an adenosine dependent manner. To harness the beneficial effects of kinetin for future human use, we assess its acute toxicity by analyzing different biochemical and histological markers in rats. Kinetin at a dose below 1 mg/kg had no adverse effects on the serum level of glucose or on the activity of serum alanine transaminase (ALT) or aspartate aminotransferase (AST) enzymes in the kinetin treated rats. Whereas, creatinine levels increased after a kinetin treatment at a dose of 0.5 mg/kg. Furthermore, 5 mg/kg treated kinetin rats showed normal renal corpuscles, but a mild degeneration was observed in the renal glomeruli and renal tubules, as well as few degenerated hepatocytes were also observed in the liver. Kinetin doses below 5 mg/kg did not show any localized toxicity in the liver and kidney tissues. In addition to unraveling the binding interaction between kinetin and A2a-R, our findings suggest safe dose limits for the future use of kinetin as a therapeutic and modulatory agent against various pathophysiological conditions.}, language = {en} } @article{AudretschGrataniWolzetal.2021, author = {Audretsch, Christof and Gratani, Fabio and Wolz, Christiane and Dandekar, Thomas}, title = {Modeling of stringent-response reflects nutrient stress induced growth impairment and essential amino acids in different Staphylococcus aureus mutants}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-88646-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260313}, year = {2021}, abstract = {Stapylococcus aureus colonises the nose of healthy individuals but can also cause a wide range of infections. Amino acid (AA) synthesis and their availability is crucial to adapt to conditions encountered in vivo. Most S. aureus genomes comprise all genes required for AA biosynthesis. Nevertheless, different strains require specific sets of AAs for growth. In this study we show that regulation inactivates pathways under certain conditions which result in these observed auxotrophies. We analyzed in vitro and modeled in silico in a Boolean semiquantitative model (195 nodes, 320 edges) the regulatory impact of stringent response (SR) on AA requirement in S. aureus HG001 (wild-type) and in mutant strains lacking the metabolic regulators RSH, CodY and CcpA, respectively. Growth in medium lacking single AAs was analyzed. Results correlated qualitatively to the in silico predictions of the final model in 92\% and quantitatively in 81\%. Remaining gaps in our knowledge are evaluated and discussed. This in silico model is made fully available and explains how integration of different inputs is achieved in SR and AA metabolism of S. aureus. The in vitro data and in silico modeling stress the role of SR and central regulators such as CodY for AA metabolisms in S. aureus.}, language = {en} } @article{OthmanBekhitAnanyetal.2021, author = {Othman, Eman M. and Bekhit, Amany A. and Anany, Mohamed A. and Dandekar, Thomas and Ragab, Hanan M. and Wahid, Ahmed}, title = {Design, Synthesis, and Anticancer Screening for Repurposed Pyrazolo[3,4-d]pyrimidine Derivatives on Four Mammalian Cancer Cell Lines}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {10}, issn = {1420-3049}, doi = {10.3390/molecules26102961}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239734}, year = {2021}, abstract = {The present study reports the synthesis of new purine bioisosteres comprising a pyrazolo[3,4-d]pyrimidine scaffold linked to mono-, di-, and trimethoxy benzylidene moieties through hydrazine linkages. First, in silico docking experiments of the synthesized compounds against Bax, Bcl-2, Caspase-3, Ki67, p21, and p53 were performed in a trial to rationalize the observed cytotoxic activity for the tested compounds. The anticancer activity of these compounds was evaluated in vitro against Caco-2, A549, HT1080, and Hela cell lines. Results revealed that two (5 and 7) of the three synthesized compounds (5, 6, and 7) showed high cytotoxic activity against all tested cell lines with IC50 values in the micro molar concentration. Our in vitro results show that there is no significant apoptotic effect for the treatment with the experimental compounds on the viability of cells against A549 cells. Ki67 expression was found to decrease significantly following the treatment of cells with the most promising candidate: drug 7. The overall results indicate that these pyrazolopyrimidine derivatives possess anticancer activity at varying doses. The suggested mechanism of action involves the inhibition of the proliferation of cancer cells.}, language = {en} }