@article{DandekarArgos1994, author = {Dandekar, Thomas and Argos, Patrick}, title = {Amiloride-sensitive epithelial Na\(^+\) channel is made of three homologous subunits}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29734}, year = {1994}, abstract = {No abstract available}, language = {en} } @article{DandekarRibesTollervey1989, author = {Dandekar, Thomas and Ribes, V. and Tollervey, David}, title = {Schizosaccharomyces pombe U4 small nuclear RNA closely resembles vertebrate U4 and is required for growth}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29771}, year = {1989}, abstract = {No abstract available}, language = {en} } @misc{Dandekar1991, author = {Dandekar, Thomas}, title = {Yeast U3 localization and correct sequence (snR17a) and promotor activity (snR17b) identified by homology search}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29781}, year = {1991}, abstract = {No abstract available}, language = {en} } @article{DandekarSibbald1990, author = {Dandekar, Thomas and Sibbald, Peter R.}, title = {Trans-splicing of pre-mRNA is predicted to occur in a wide range of organisms including vertebrates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29798}, year = {1990}, abstract = {No abstract available}, language = {en} } @article{SchultzMetznerDandekaretal.1986, author = {Schultz, R{\"u}diger and Metzner, Katharina and Dandekar, Thomas and Gramsch, Christian}, title = {Opiates induce long-term increases in prodynorphin derived peptide levels in the guinea-pig myenteric plexus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29809}, year = {1986}, abstract = {No abstract available}, language = {en} } @article{DandekarTollervey1991, author = {Dandekar, Thomas and Tollervey, D.}, title = {Thirty-three nucleotides of 5' flanking sequence including the TATA box are necessary and sufficient for efficient U2 snRNA transcription in Schizosaccharomycespombe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29959}, year = {1991}, abstract = {No abstract available}, language = {en} } @misc{DandekarArgos1992, author = {Dandekar, Thomas and Argos, Patrick}, title = {A novel heterodimeric cysteine protease is required for interleukin 1ß processing in monocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29986}, year = {1992}, abstract = {No abstract available}, language = {en} } @article{DandekarTollervey1992, author = {Dandekar, Thomas and Tollervey, David}, title = {Mutational analysis of Schizosaccharomyces pombe U4 snRNA by plasmid exchange}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29969}, year = {1992}, abstract = {No abstract available}, language = {en} } @inproceedings{DandekarArgos1993, author = {Dandekar, Thomas and Argos, P.}, title = {Genetic algorithms as a new tool to study protein stability}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29990}, year = {1993}, abstract = {No abstract available}, language = {en} } @article{DandekarStripeckeGrayetal.1991, author = {Dandekar, Thomas and Stripecke, Renata and Gray, Nicola K. and Goossen, Britta and Constable, Anne and Johansson, Hans E. and Hentze, Matthias W.}, title = {Identification of a novel iron-responsive element in murine and human erythroid \(\delta\)-aminolevulinic acid synthase mRNA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29929}, year = {1991}, abstract = {No abstract available}, language = {en} } @misc{DandekarArgos1993, author = {Dandekar, Thomas and Argos, P.}, title = {Drug assay using antibody mimics made by molecular imprinting}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30003}, year = {1993}, abstract = {No abstract available}, language = {en} } @article{DandekarArgos1992, author = {Dandekar, Thomas and Argos, P.}, title = {Potential of genetic algorithms in protein folding and protein engineering simulations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29974}, year = {1992}, abstract = {No abstract available}, language = {de} } @misc{DandekarArgos1992, author = {Dandekar, Thomas and Argos, Patrick}, title = {Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29814}, year = {1992}, abstract = {No abstract available}, language = {en} } @article{DandekarTollervey1989, author = {Dandekar, Thomas and Tollervey, David}, title = {Cloning of Schizosaccharomyces pombe genes encoding the U1,U2,U3 and U4 snRNAs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29919}, year = {1989}, abstract = {No abstract available}, language = {en} } @article{DandekarGramschHoughtonetal.1985, author = {Dandekar, Thomas and Gramsch, Christian and Houghton, Richard A. and Schultz, R{\"u}diger}, title = {Affinity purification of \(\beta\)-endorphin-like material from NG108CC15 cells by means of the monoclonal \(\beta\)-endorphin antibody 3-E7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29896}, year = {1985}, abstract = {No abstract available}, language = {en} } @misc{DandekarArgos1994, author = {Dandekar, Thomas and Argos, P.}, title = {Three-dimensional structure of the 67k N-terminal Fragment of E.coli DNA Topoisomerase I}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29836}, year = {1994}, abstract = {No abstract available}, language = {en} } @article{DandekarArgos1994, author = {Dandekar, Thomas and Argos, P.}, title = {Folding the main chain of small proteins with the genetic algorithm}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29847}, year = {1994}, abstract = {No abstract available}, language = {de} } @article{DandekarTollervey1993, author = {Dandekar, Thomas and Tollervey, David}, title = {Identification and functional analysis of a novel yeast small nucleolar RNA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29850}, year = {1993}, abstract = {No abstract available}, language = {en} } @misc{DandekarArgos1993, author = {Dandekar, Thomas and Argos, P.}, title = {The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted \(\alpha\)-helices: Crystal structure of the protein DNA-complex}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29866}, year = {1993}, abstract = {No abstract available}, language = {en} } @article{DandekarSchulz1987, author = {Dandekar, Thomas and Schulz, R.}, title = {Evidence for the expression of peptides derived from three opioid precursors in NG 108CC15 hybrid cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29909}, year = {1987}, abstract = {No abstract available}, language = {en} } @misc{DandekarArgos1991, author = {Dandekar, Thomas and Argos, Patrick}, title = {Chaperonin-mediated protein folding at the surface of groEL through a "molten globule" intermediate}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29939}, year = {1991}, abstract = {No abstract available}, language = {en} } @article{ShityakovFoersterRethwilmetal.2014, author = {Shityakov, Sergey and F{\"o}rster, Carola and Rethwilm, Axel and Dandekar, Thomas}, title = {Evaluation and Prediction of the HIV-1 Central Polypurine Tract Influence on Foamy Viral Vectors to Transduce Dividing and Growth-Arrested Cells}, doi = {10.1155/2014/487969}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112763}, year = {2014}, abstract = {Retroviral vectors are potent tools for gene delivery and various biomedical applications. To accomplish a gene transfer task successfully, retroviral vectors must effectively transduce diverse cell cultures at different phases of a cell cycle. However, very promising retroviral vectors based on the foamy viral (FV) backbone lack the capacity to efficiently transduce quiescent cells. It is hypothesized that this phenomenon might be explained as the inability of foamy viruses to form a pre-integration complex (PIC) with nuclear import activity in growth-arrested cells, which is the characteristic for lentiviruses (HIV-1). In this process, the HIV-1 central polypurine tract (cPPT) serves as a primer for plus-strand synthesis to produce a "flap" element and is believed to be crucial for the subsequent double-stranded cDNA formation of all retroviral RNA genomes. In this study, the effects of the lentiviral cPPT element on the FV transduction potential in dividing and growth-arrested (G1/S phase) adenocarcinomic human alveolar basal epithelial (A549) cells are investigated by experimental and theoretical methods. The results indicated that the HIV-1 cPPT element in a foamy viral vector background will lead to a significant reduction of the FV transduction and viral titre in growth-arrested cells due to the absence of PICs with nuclear import activity.}, subject = {Evaluation}, language = {en} } @article{SchulzeTillichDandekaretal.2013, author = {Schulze, Katja and Tillich, Ulrich M. and Dandekar, Thomas and Frohme, Marcus}, title = {PlanktoVision - an automated analysis system for the identification of phytoplankton}, series = {BMC Bioinformatics}, journal = {BMC Bioinformatics}, doi = {10.1186/1471-2105-14-115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96395}, year = {2013}, abstract = {Background Phytoplankton communities are often used as a marker for the determination of fresh water quality. The routine analysis, however, is very time consuming and expensive as it is carried out manually by trained personnel. The goal of this work is to develop a system for an automated analysis. Results A novel open source system for the automated recognition of phytoplankton by the use of microscopy and image analysis was developed. It integrates the segmentation of the organisms from the background, the calculation of a large range of features, and a neural network for the classification of imaged organisms into different groups of plankton taxa. The analysis of samples containing 10 different taxa showed an average recognition rate of 94.7\% and an average error rate of 5.5\%. The presented system has a flexible framework which easily allows expanding it to include additional taxa in the future. Conclusions The implemented automated microscopy and the new open source image analysis system - PlanktoVision - showed classification results that were comparable or better than existing systems and the exclusion of non-plankton particles could be greatly improved. The software package is published as free software and is available to anyone to help make the analysis of water quality more reproducible and cost effective.}, language = {en} } @article{DandekarLiangKrueger2013, author = {Dandekar, Thomas and Liang, Chunguang and Kr{\"u}ger, Beate}, title = {GoSynthetic database tool to analyse natural and engineered molecular processes}, series = {Database}, journal = {Database}, doi = {10.1093/database/bat043}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97023}, year = {2013}, abstract = {An essential topic for synthetic biologists is to understand the structure and function of biological processes and involved proteins and plan experiments accordingly. Remarkable progress has been made in recent years towards this goal. However, efforts to collect and present all information on processes and functions are still cumbersome. The database tool GoSynthetic provides a new, simple and fast way to analyse biological processes applying a hierarchical database. Four different search modes are implemented. Furthermore, protein interaction data, cross-links to organism-specific databases (17 organisms including six model organisms and their interactions), COG/KOG, GO and IntAct are warehoused. The built in connection to technical and engineering terms enables a simple switching between biological concepts and concepts from engineering, electronics and synthetic biology. The current version of GoSynthetic covers more than one million processes, proteins, COGs and GOs. It is illustrated by various application examples probing process differences and designing modifications.}, language = {en} } @article{BrehmHemerKonradetal.2014, author = {Brehm, Klaus and Hemer, Sarah and Konrad, Christian and Spiliotis, Markus and Koziol, Uriel and Schaack, Dominik and F{\"o}rster, Sabine and Gelmedin, Verena and Stadelmann, Britta and Dandekar, Thomas and Hemphill, Andrew}, title = {Host insulin stimulates Echinococcus multilocularis insulin signalling pathways and larval development}, doi = {10.1186/1741-7007-12-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110357}, year = {2014}, abstract = {Background The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host's liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. Results Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite's glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. Conclusions Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs.}, language = {en} } @unpublished{Dandekar2021, author = {Dandekar, Thomas}, title = {Our universe may have started by Qubit decoherence}, doi = {10.25972/OPUS-23918}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239181}, pages = {54}, year = {2021}, abstract = {Our universe may have started by Qubit decoherence: In quantum computers, qubits have all their states undefined during calculation and become defined as output ("decoherence"). We study the transition from an uncontrolled, chaotic quantum vacuum ("before") to a clearly interacting "real world". In such a cosmology, the Big Bang singularity is replaced by a condensation event of interacting strings. This triggers a crystallization process. This avoids inflation, not fitting current observations: increasing long-range interactions limit growth and crystal symmetries ensure the same laws of nature and basic symmetries over the whole crystal. Tiny mis-arrangements provide nuclei of superclusters and galaxies and crystal structure allows arrangement of dark (halo regions) and normal matter (galaxy nuclei) for galaxy formation. Crystals come and go: an evolutionary cosmology is explored: entropic forces from the quantum soup "outside" of the crystal try to dissolve it. This corresponds to dark energy and leads to a "big rip" in 70 Gigayears. Selection for best growth and condensation events over generations of crystals favors multiple self-organizing processes within the crystal including life or even conscious observers in our universe. Philosophically this theory shows harmony with nature and replaces absurd perspectives of current cosmology. Independent of cosmology, we suggest that a "real world" (so our everyday macroscopic world) happens only inside a crystal. "Outside" there is wild quantum foam and superposition of all possibilities. In our crystallized world the vacuum no longer boils but is cooled down by the crystallization event, space-time exists and general relativity holds. Vacuum energy becomes 10**20 smaller, exactly as observed in our everyday world. We live in a "solid" state, within a crystal, the n quanta which build our world have all their different m states nicely separated. There are only nm states available for this local "multiverse". The arrow of entropy for each edge of the crystal forms one fate, one world-line or clear development of our world, while layers of the crystal are different system states. Mathematical leads from loop quantum gravity (LQG) point to required interactions and potentials. Interaction potentials for strings or loop quanta of any dimension allow a solid, decoherent state of quanta challenging to calculate. However, if we introduce here the heuristic that any type of physical interaction of strings corresponds just to a type of calculation, there is already since 1898 the Hurwitz theorem showing that then only 1D, 2D, 4D and 8D (octonions) allow complex or hypercomplex number calculations. No other hypercomplex numbers and hence dimensions or symmetries are possible to allow calculations without yielding divisions by zero. However, the richest solution allowed by the Hurwitz theorem, octonions, is actually the observed symmetry of our universe, E8. Standard physics such as condensation, crystallization and magnetization but also solid-state physics and quantum computing allow us to show an initial mathematical treatment of our new theory by LQG to describe the cosmological state transformations by equations, and, most importantly, point out routes to parametrization of free parameters looking at testable phenomena, experiments and formulas that describe processes of crystallization, protein folding, magnetization, solid-state physics and quantum computing. This is presented here for LQG, for string theory it would be more elegant but was too demanding to be shown here. Note: While my previous Opus server preprint "A new cosmology of a crystallization process (decoherence) from the surrounding quantum soup provides heuristics to unify general relativity and quantum physics by solid state physics" (https://doi.org/10.25972/OPUS-23076) deals with the same topics and basic formulas, this new version is improved: clearer in title, better introduction, more stringent in its mathematics and improved discussion of the implications including quantum computing, hints for parametrization and connections to LQG and other current cosmological efforts. This 5th of June 2021 version is again an OPUS preprint, but this will next be edited for Archives https://arxiv.org.}, language = {en} } @unpublished{Dandekar2008, author = {Dandekar, Thomas}, title = {Why are nature´s constants so fine-tuned? The case for an escalating complex universe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-34488}, year = {2008}, abstract = {Why is our universe so fine-tuned? In this preprint we discuss that this is not a strange accident but that fine-tuned universes can be considered to be exceedingly large if one counts the number of observable different states (i.e. one aspect of the more general preprint http://www.opus-bayern.de/uni-wuerzburg/volltexte/2009/3353/). Looking at parameter variation for the same set of physical laws simple and complex processes (including life) and worlds in a multiverse are compared in simple examples. Next the anthropocentric principle is extended as many conditions which are generally interpreted anthropocentric only ensure a large space of different system states. In particular, the observed over-tuning beyond the level for our existence is explainable by these system considerations. More formally, the state space for different systems becomes measurable and comparable looking at their output behaviour. We show that highly interacting processes are more complex then Chaitin complexity, the latter denotes processes not compressible by shorter descriptions (Kolomogorov complexity). The complexity considerations help to better study and compare different processes (programs, living cells, environments and worlds) including dynamic behaviour and can be used for model selection in theoretical physics. Moreover, the large size (in terms of different states) of a world allowing complex processes including life can in a model calculation be determined applying discrete histories from quantum spin-loop theory. Nevertheless there remains a lot to be done - hopefully the preprint stimulates further efforts in this area.}, subject = {Natur}, language = {en} } @misc{Dandekar1991, author = {Dandekar, Thomas}, title = {Olbers' Paradox (peer-reviewed scientific correspondence)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-31672}, year = {1991}, abstract = {No abstract available}, language = {en} } @article{ArgosDandekar1994, author = {Argos, P. and Dandekar, Thomas}, title = {Delineating the main chain topology of four-helix bundle proteins using the genetic algorithm and knowledge based on the amino acid sequence alone}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33807}, year = {1994}, abstract = {No abstract available}, subject = {Proteine}, language = {en} } @article{RatzkaFoersterLiangetal.2012, author = {Ratzka, Carolin and F{\"o}rster, Frank and Liang, Chunguang and Kupper, Maria and Dandekar, Thomas and Feldhaar, Heike and Gross, Roy}, title = {Molecular characterization of antimicrobial peptide genes of the carpenter ant Camponotus floridanus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75985}, year = {2012}, abstract = {The production of antimicrobial peptides (AMPs) is a major defense mechanism against pathogen infestation and of particular importance for insects relying exclusively on an innate immune system. Here, we report on the characterization of three AMPs from the carpenter ant Camponotus floridanus. Due to sequence similarities and amino acid composition these peptides can be classified into the cysteine-rich (e.g. defensin) and glycine-rich (e.g. hymenoptaecin) AMP groups, respectively. The gene and cDNA sequences of these AMPs were established and their expression was shown to be induced by microbial challenge. We characterized two different defensin genes. The defensin-2 gene has a single intron, whereas the defensin-1 gene has two introns. The deduced amino acid sequence of the C. floridanus defensins is very similar to other known ant defensins with the exception of a short C-terminal extension of defensin-1. The hymenoptaecin gene has a single intron and a very peculiar domain structure. The corresponding precursor protein consists of a signal- and a pro-sequence followed by a hymenoptaecin-like domain and six directly repeated hymenoptaecin domains. Each of the hymenoptaecin domains is flanked by an EAEP-spacer sequence and a RR-site known to be a proteolytic processing site. Thus, proteolytic processing of the multipeptide precursor may generate several mature AMPs leading to an amplification of the immune response. Bioinformatical analyses revealed the presence of hymenoptaecin genes with similar multipeptide precursor structure in genomes of other ant species suggesting an evolutionary conserved important role of this gene in ant immunity.}, subject = {Biologie}, language = {en} } @article{DandekarAhmedSamanetal.2013, author = {Dandekar, Thomas and Ahmed, Zeeshan and Saman, Zeeshan and Huber, Claudia and Hensel, Michael and Schomburg, Dietmar and M{\"u}nch, Richard and Eisenreich, Wolfgang}, title = {Software LS-MIDA for efficient mass isotopomer distribution analysis in metabolic modelling}, series = {BMC Bioinformatics}, journal = {BMC Bioinformatics}, doi = {10.1186/1471-2334-13-266}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-95882}, year = {2013}, abstract = {Background The knowledge of metabolic pathways and fluxes is important to understand the adaptation of organisms to their biotic and abiotic environment. The specific distribution of stable isotope labelled precursors into metabolic products can be taken as fingerprints of the metabolic events and dynamics through the metabolic networks. An open-source software is required that easily and rapidly calculates from mass spectra of labelled metabolites, derivatives and their fragments global isotope excess and isotopomer distribution. Results The open-source software "Least Square Mass Isotopomer Analyzer" (LS-MIDA) is presented that processes experimental mass spectrometry (MS) data on the basis of metabolite information such as the number of atoms in the compound, mass to charge ratio (m/e or m/z) values of the compounds and fragments under study, and the experimental relative MS intensities reflecting the enrichments of isotopomers in 13C- or 15 N-labelled compounds, in comparison to the natural abundances in the unlabelled molecules. The software uses Brauman's least square method of linear regression. As a result, global isotope enrichments of the metabolite or fragment under study and the molar abundances of each isotopomer are obtained and displayed. Conclusions The new software provides an open-source platform that easily and rapidly converts experimental MS patterns of labelled metabolites into isotopomer enrichments that are the basis for subsequent observation-driven analysis of pathways and fluxes, as well as for model-driven metabolic flux calculations.}, language = {en} } @article{BalkenholKaltdorfMammadovaBachetal.2020, author = {Balkenhol, Johannes and Kaltdorf, Kristin V. and Mammadova-Bach, Elmina and Braun, Attila and Nieswandt, Bernhard and Dittrich, Marcus and Dandekar, Thomas}, title = {Comparison of the central human and mouse platelet signaling cascade by systems biological analysis}, series = {BMC Genomics}, volume = {21}, journal = {BMC Genomics}, doi = {10.1186/s12864-020-07215-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230377}, year = {2020}, abstract = {Background Understanding the molecular mechanisms of platelet activation and aggregation is of high interest for basic and clinical hemostasis and thrombosis research. The central platelet protein interaction network is involved in major responses to exogenous factors. This is defined by systemsbiological pathway analysis as the central regulating signaling cascade of platelets (CC). Results The CC is systematically compared here between mouse and human and major differences were found. Genetic differences were analysed comparing orthologous human and mouse genes. We next analyzed different expression levels of mRNAs. Considering 4 mouse and 7 human high-quality proteome data sets, we identified then those major mRNA expression differences (81\%) which were supported by proteome data. CC is conserved regarding genetic completeness, but we observed major differences in mRNA and protein levels between both species. Looking at central interactors, human PLCB2, MMP9, BDNF, ITPR3 and SLC25A6 (always Entrez notation) show absence in all murine datasets. CC interactors GNG12, PRKCE and ADCY9 occur only in mice. Looking at the common proteins, TLN1, CALM3, PRKCB, APP, SOD2 and TIMP1 are higher abundant in human, whereas RASGRP2, ITGB2, MYL9, EIF4EBP1, ADAM17, ARRB2, CD9 and ZYX are higher abundant in mouse. Pivotal kinase SRC shows different regulation on mRNA and protein level as well as ADP receptor P2RY12. Conclusions Our results highlight species-specific differences in platelet signaling and points of specific fine-tuning in human platelets as well as murine-specific signaling differences.}, language = {en} } @article{GordonDaneshianBouwstraetal.2015, author = {Gordon, Sarah and Daneshian, Mardas and Bouwstra, Joke and Caloni, Francesca and Constant, Samuel and Davies, Donna E. and Dandekar, Gudrun and Guzman, Carlos A. and Fabian, Eric and Haltner, Eleonore and Hartung, Thomas and Hasiwa, Nina and Hayden, Patrick and Kandarova, Helena and Khare, Sangeeta and Krug, Harald F. and Kneuer, Carsten and Leist, Marcel and Lian, Guoping and Marx, Uwe and Metzger, Marco and Ott, Katharina and Prieto, Pilar and Roberts, Michael S. and Roggen, Erwin L. and Tralau, Tewes and van den Braak, Claudia and Walles, Heike and Lehr, Claus-Michael}, title = {Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology}, series = {ALTEX: Alternatives to Animal Experimentation}, volume = {32}, journal = {ALTEX: Alternatives to Animal Experimentation}, number = {4}, doi = {10.14573/altex.1510051}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144275}, pages = {327-378}, year = {2015}, abstract = {Models of the outer epithelia of the human body namely the skin, the intestine and the lung have found valid applications in both research and industrial settings as attractive alternatives to animal testing. A variety of approaches to model these barriers are currently employed in such fields, ranging from the utilization of ex vivo tissue to reconstructed in vitro models, and further to chip-based technologies, synthetic membrane systems and, of increasing current interest, in silico modeling approaches. An international group of experts in the field of epithelial barriers was convened from academia, industry and regulatory bodies to present both the current state of the art of non-animal models of the skin, intestinal and pulmonary barriers in their various fields of application, and to discuss research-based, industry-driven and regulatory-relevant future directions for both the development of new models and the refinement of existing test methods. Issues of model relevance and preference, validation and standardization, acceptance, and the need for simplicity versus complexity were focal themes of the discussions. The outcomes of workshop presentations and discussions, in relation to both current status and future directions in the utilization and development of epithelial barrier models, are presented by the attending experts in the current report.}, language = {en} } @article{GuptaSrivastavaMinochaetal.2021, author = {Gupta, Shishir K. and Srivastava, Mugdha and Minocha, Rashmi and Akash, Aman and Dangwal, Seema and Dandekar, Thomas}, title = {Alveolar regeneration in COVID-19 patients: a network perspective}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {20}, issn = {1422-0067}, doi = {10.3390/ijms222011279}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284307}, year = {2021}, abstract = {A viral infection involves entry and replication of viral nucleic acid in a host organism, subsequently leading to biochemical and structural alterations in the host cell. In the case of SARS-CoV-2 viral infection, over-activation of the host immune system may lead to lung damage. Albeit the regeneration and fibrotic repair processes being the two protective host responses, prolonged injury may lead to excessive fibrosis, a pathological state that can result in lung collapse. In this review, we discuss regeneration and fibrosis processes in response to SARS-CoV-2 and provide our viewpoint on the triggering of alveolar regeneration in coronavirus disease 2019 (COVID-19) patients.}, language = {en} } @unpublished{Dandekar2023, author = {Dandekar, Thomas}, title = {A modified inflation cosmology relying on qubit-crystallization: rare qubit interactions trigger qubit ensemble growth and crystallization into "real" bit-ensembles and emergent time}, doi = {10.25972/OPUS-32177}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321777}, pages = {42}, year = {2023}, abstract = {In a modified inflation scenario we replace the "big bang" by a condensation event in an eternal all-compassing big ocean of free qubits in our modified cosmology. Interactions of qubits in the qubit ocean are rare. If they happen, they provide a nucleus for a new universe as the qubits become decoherent and freeze-out into defined bit ensembles. Second, we replace inflation by a crystallization event triggered by the nucleus of interacting qubits to which rapidly more and more qubits attach (like in everyday crystal growth) - the crystal unit cell guarantees same symmetries everywhere. Hence, the textbook inflation scenario to explain the same laws of nature in our domain is replaced by the crystal unit cell of the crystal formed. We give here only the perspective or outline of this modified inflation theory, as the detailed mathematical physics behind this has still to be formulated and described. Interacting qubits solidify, quantum entropy decreases (but increases in the ocean around). The interacting qubits form a rapidly growing domain where the n**m states become separated ensemble states, rising long-range forces stop ultimately further growth. After that very early events, standard cosmology with the hot fireball model takes over. Our theory agrees well with lack of inflation traces in cosmic background measurements, but more importantly can explain well by such a type of cosmological crystallization instead of inflation the early creation of large-scale structure of voids and filaments, supercluster formation, galaxy formation, and the dominance of matter: no annihilation of antimatter necessary, rather the unit cell of our crystal universe has a matter handedness avoiding anti-matter. We prove a triggering of qubit interactions can only be 1,2,4 or 8-dimensional (agrees with E8 symmetry of our universe). Repulsive forces at ultrashort distances result from quantization, long-range forces limit crystal growth. Crystals come and go in the qubit ocean. This selects for the ability to lay seeds for new crystals, for self-organization and life-friendliness. The phase space of the crystal agrees with the standard model of the basic four forces for n quanta. It includes all possible ensemble combinations of their quantum states m, a total of n**m states. Neighbor states reach according to transition possibilities (S-matrix) with emergent time from entropic ensemble gradients. However, this means that in our four dimensions there is only one bit overlap to neighbor states left (almost solid, only below h dash liquidity left). However, the E8 symmetry of heterotic string theory has six rolled-up, small dimensions which help to keep the qubit crystal together and will never expand. Finally, we give first energy estimates for free qubits vs bound qubits, misplacements in the qubit crystal and entropy increase during qubit decoherence / crystal formation. Scalar fields for color interaction and gravity derive from the permeating qubit-interaction field in the crystal. Hence, vacuum energy gets low inside the qubit crystal. Condensed mathematics may advantageously help to model free (many states denote the same qubit) and bound qubits in phase space.}, language = {en} } @article{NaseemOsmanoğluKaltdorfetal.2020, author = {Naseem, Muhammad and Osmanoğlu, {\"O}zge and Kaltdorf, Martin and Alblooshi, Afnan Ali M. A. and Iqbal, Jibran and Howari, Fares M. and Srivastava, Mugdha and Dandekar, Thomas}, title = {Integrated framework of the immune-defense transcriptional signatures in the Arabidopsis shoot apical meristem}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms21165745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285730}, year = {2020}, abstract = {The growing tips of plants grow sterile; therefore, disease-free plants can be generated from them. How plants safeguard growing apices from pathogen infection is still a mystery. The shoot apical meristem (SAM) is one of the three stem cells niches that give rise to the above ground plant organs. This is very well explored; however, how signaling networks orchestrate immune responses against pathogen infections in the SAM remains unclear. To reconstruct a transcriptional framework of the differentially expressed genes (DEGs) pertaining to various SAM cellular populations, we acquired large-scale transcriptome datasets from the public repository Gene Expression Omnibus (GEO). We identify here distinct sets of genes for various SAM cellular populations that are enriched in immune functions, such as immune defense, pathogen infection, biotic stress, and response to salicylic acid and jasmonic acid and their biosynthetic pathways in the SAM. We further linked those immune genes to their respective proteins and identify interactions among them by mapping a transcriptome-guided SAM-interactome. Furthermore, we compared stem-cells regulated transcriptome with innate immune responses in plants showing transcriptional separation among their DEGs in Arabidopsis. Besides unleashing a repertoire of immune-related genes in the SAM, our analysis provides a SAM-interactome that will help the community in designing functional experiments to study the specific defense dynamics of the SAM-cellular populations. Moreover, our study promotes the essence of large-scale omics data re-analysis, allowing a fresh look at the SAM-cellular transcriptome repurposing data-sets for new questions.}, language = {en} } @article{BreitenbachLorenzDandekar2019, author = {Breitenbach, Tim and Lorenz, Kristina and Dandekar, Thomas}, title = {How to steer and control ERK and the ERK signaling cascade exemplified by looking at cardiac insufficiency}, series = {International Journal of Molecular Sciences}, volume = {20}, journal = {International Journal of Molecular Sciences}, number = {9}, issn = {1422-0067}, doi = {10.3390/ijms20092179}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285164}, year = {2019}, abstract = {Mathematical optimization framework allows the identification of certain nodes within a signaling network. In this work, we analyzed the complex extracellular-signal-regulated kinase 1 and 2 (ERK1/2) cascade in cardiomyocytes using the framework to find efficient adjustment screws for this cascade that is important for cardiomyocyte survival and maladaptive heart muscle growth. We modeled optimal pharmacological intervention points that are beneficial for the heart, but avoid the occurrence of a maladaptive ERK1/2 modification, the autophosphorylation of ERK at threonine 188 (ERK\(^{Thr188}\) phosphorylation), which causes cardiac hypertrophy. For this purpose, a network of a cardiomyocyte that was fitted to experimental data was equipped with external stimuli that model the pharmacological intervention points. Specifically, two situations were considered. In the first one, the cardiomyocyte was driven to a desired expression level with different treatment strategies. These strategies were quantified with respect to beneficial effects and maleficent side effects and then which one is the best treatment strategy was evaluated. In the second situation, it was shown how to model constitutively activated pathways and how to identify drug targets to obtain a desired activity level that is associated with a healthy state and in contrast to the maleficent expression pattern caused by the constitutively activated pathway. An implementation of the algorithms used for the calculations is also presented in this paper, which simplifies the application of the presented framework for drug targeting, optimal drug combinations and the systematic and automatic search for pharmacological intervention points. The codes were designed such that they can be combined with any mathematical model given by ordinary differential equations.}, language = {en} } @article{RemmeleLutherBalkenholetal.2015, author = {Remmele, Christian W. and Luther, Christian H. and Balkenhol, Johannes and Dandekar, Thomas and M{\"u}ller, Tobias and Dittrich, Marcus T.}, title = {Integrated inference and evaluation of host-fungi interaction networks}, series = {Frontiers in Microbiology}, volume = {6}, journal = {Frontiers in Microbiology}, number = {764}, doi = {10.3389/fmicb.2015.00764}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148278}, year = {2015}, abstract = {Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune response evasion are specific molecular interactions between the fungal pathogen and its human host. Experimentally validated knowledge about these crucial interactions is rare in literature and even specialized host pathogen databases mainly focus on bacterial and viral interactions whereas information on fungi is still sparse. To establish large-scale host fungi interaction networks on a systems biology scale, we develop an extended inference approach based on protein orthology and data on gene functions. Using human and yeast intraspecies networks as template, we derive a large network of pathogen host interactions (PHI). Rigorous filtering and refinement steps based on cellular localization and pathogenicity information of predicted interactors yield a primary scaffold of fungi human and fungi mouse interaction networks. Specific enrichment of known pathogenicity-relevant genes indicates the biological relevance of the predicted PHI. A detailed inspection of functionally relevant subnetworks reveals novel host fungal interaction candidates such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our results demonstrate the applicability of interolog-based prediction methods for host fungi interactions and underline the importance of filtering and refinement steps to attain biologically more relevant interactions. This integrated network framework can serve as a basis for future analyses of high-throughput host fungi transcriptome and proteome data.}, language = {en} } @article{KarlDandekar2015, author = {Karl, Stefan and Dandekar, Thomas}, title = {Convergence behaviour and control in non-linear biological networks}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {09746}, doi = {10.1038/srep09746}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148510}, year = {2015}, abstract = {Control of genetic regulatory networks is challenging to define and quantify. Previous control centrality metrics, which aim to capture the ability of individual nodes to control the system, have been found to suffer from plausibility and applicability problems. Here we present a new approach to control centrality based on network convergence behaviour, implemented as an extension of our genetic regulatory network simulation framework Jimena (http://stefan-karl.de/jimena). We distinguish three types of network control, and show how these mathematical concepts correspond to experimentally verified node functions and signalling pathways in immunity and cell differentiation: Total control centrality quantifies the impact of node mutations and identifies potential pharmacological targets such as genes involved in oncogenesis (e.g. zinc finger protein GLI2 or bone morphogenetic proteins in chondrocytes). Dynamic control centrality describes relaying functions as observed in signalling cascades (e.g. src kinase or Jak/Stat pathways). Value control centrality measures the direct influence of the value of the node on the network (e.g. Indian hedgehog as an essential regulator of proliferation in chondrocytes). Surveying random scale-free networks and biological networks, we find that control of the network resides in few high degree driver nodes and networks can be controlled best if they are sparsely connected.}, language = {en} } @article{BencurovaShityakovSchaacketal.2022, author = {Bencurova, Elena and Shityakov, Sergey and Schaack, Dominik and Kaltdorf, Martin and Sarukhanyan, Edita and Hilgarth, Alexander and Rath, Christin and Montenegro, Sergio and Roth, G{\"u}nter and Lopez, Daniel and Dandekar, Thomas}, title = {Nanocellulose composites as smart devices with chassis, light-directed DNA Storage, engineered electronic properties, and chip integration}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {10}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2022.869111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283033}, year = {2022}, abstract = {The rapid development of green and sustainable materials opens up new possibilities in the field of applied research. Such materials include nanocellulose composites that can integrate many components into composites and provide a good chassis for smart devices. In our study, we evaluate four approaches for turning a nanocellulose composite into an information storage or processing device: 1) nanocellulose can be a suitable carrier material and protect information stored in DNA. 2) Nucleotide-processing enzymes (polymerase and exonuclease) can be controlled by light after fusing them with light-gating domains; nucleotide substrate specificity can be changed by mutation or pH change (read-in and read-out of the information). 3) Semiconductors and electronic capabilities can be achieved: we show that nanocellulose is rendered electronic by iodine treatment replacing silicon including microstructures. Nanocellulose semiconductor properties are measured, and the resulting potential including single-electron transistors (SET) and their properties are modeled. Electric current can also be transported by DNA through G-quadruplex DNA molecules; these as well as classical silicon semiconductors can easily be integrated into the nanocellulose composite. 4) To elaborate upon miniaturization and integration for a smart nanocellulose chip device, we demonstrate pH-sensitive dyes in nanocellulose, nanopore creation, and kinase micropatterning on bacterial membranes as well as digital PCR micro-wells. Future application potential includes nano-3D printing and fast molecular processors (e.g., SETs) integrated with DNA storage and conventional electronics. This would also lead to environment-friendly nanocellulose chips for information processing as well as smart nanocellulose composites for biomedical applications and nano-factories.}, language = {en} } @article{KaltdorfSchulzeHelmprobstetal.2017, author = {Kaltdorf, Kristin Verena and Schulze, Katja and Helmprobst, Frederik and Kollmannsberger, Philip and Dandekar, Thomas and Stigloher, Christian}, title = {Fiji macro 3D ART VeSElecT: 3D automated reconstruction tool for vesicle structures of electron tomograms}, series = {PLoS Computational Biology}, volume = {13}, journal = {PLoS Computational Biology}, number = {1}, doi = {10.1371/journal.pcbi.1005317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172112}, year = {2017}, abstract = {Automatic image reconstruction is critical to cope with steadily increasing data from advanced microscopy. We describe here the Fiji macro 3D ART VeSElecT which we developed to study synaptic vesicles in electron tomograms. We apply this tool to quantify vesicle properties (i) in embryonic Danio rerio 4 and 8 days past fertilization (dpf) and (ii) to compare Caenorhabditis elegans N2 neuromuscular junctions (NMJ) wild-type and its septin mutant (unc-59(e261)). We demonstrate development-specific and mutant-specific changes in synaptic vesicle pools in both models. We confirm the functionality of our macro by applying our 3D ART VeSElecT on zebrafish NMJ showing smaller vesicles in 8 dpf embryos then 4 dpf, which was validated by manual reconstruction of the vesicle pool. Furthermore, we analyze the impact of C. elegans septin mutant unc-59(e261) on vesicle pool formation and vesicle size. Automated vesicle registration and characterization was implemented in Fiji as two macros (registration and measurement). This flexible arrangement allows in particular reducing false positives by an optional manual revision step. Preprocessing and contrast enhancement work on image-stacks of 1nm/pixel in x and y direction. Semi-automated cell selection was integrated. 3D ART VeSElecT removes interfering components, detects vesicles by 3D segmentation and calculates vesicle volume and diameter (spherical approximation, inner/outer diameter). Results are collected in color using the RoiManager plugin including the possibility of manual removal of non-matching confounder vesicles. Detailed evaluation considered performance (detected vesicles) and specificity (true vesicles) as well as precision and recall. We furthermore show gain in segmentation and morphological filtering compared to learning based methods and a large time gain compared to manual segmentation. 3D ART VeSElecT shows small error rates and its speed gain can be up to 68 times faster in comparison to manual annotation. Both automatic and semi-automatic modes are explained including a tutorial.}, language = {en} } @article{LiangRiosMiguelJaricketal.2021, author = {Liang, Chunguang and Rios-Miguel, Ana B. and Jarick, Marcel and Neurgaonkar, Priya and Girard, Myriam and Fran{\c{c}}ois, Patrice and Schrenzel, Jacques and Ibrahim, Eslam S. and Ohlsen, Knut and Dandekar, Thomas}, title = {Staphylococcus aureus transcriptome data and metabolic modelling investigate the interplay of Ser/Thr kinase PknB, its phosphatase Stp, the glmR/yvcK regulon and the cdaA operon for metabolic adaptation}, series = {Microorganisms}, volume = {9}, journal = {Microorganisms}, number = {10}, issn = {2076-2607}, doi = {10.3390/microorganisms9102148}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248459}, year = {2021}, abstract = {Serine/threonine kinase PknB and its corresponding phosphatase Stp are important regulators of many cell functions in the pathogen S. aureus. Genome-scale gene expression data of S. aureus strain NewHG (sigB\(^+\)) elucidated their effect on physiological functions. Moreover, metabolic modelling from these data inferred metabolic adaptations. We compared wild-type to deletion strains lacking pknB, stp or both. Ser/Thr phosphorylation of target proteins by PknB switched amino acid catabolism off and gluconeogenesis on to provide the cell with sufficient components. We revealed a significant impact of PknB and Stp on peptidoglycan, nucleotide and aromatic amino acid synthesis, as well as catabolism involving aspartate transaminase. Moreover, pyrimidine synthesis was dramatically impaired by stp deletion but only slightly by functional loss of PknB. In double knockouts, higher activity concerned genes involved in peptidoglycan, purine and aromatic amino acid synthesis from glucose but lower activity of pyrimidine synthesis from glucose compared to the wild type. A second transcriptome dataset from S. aureus NCTC 8325 (sigB\(^-\)) validated the predictions. For this metabolic adaptation, PknB was found to interact with CdaA and the yvcK/glmR regulon. The involved GlmR structure and the GlmS riboswitch were modelled. Furthermore, PknB phosphorylation lowered the expression of many virulence factors, and the study shed light on S. aureus infection processes.}, language = {en} } @article{GrebinykPrylutskaGrebinyketal.2019, author = {Grebinyk, Anna and Prylutska, Svitlana and Grebinyk, Sergii and Prylutskyy, Yuriy and Ritter, Uwe and Matyshevska, Olga and Dandekar, Thomas and Frohme, Marcus}, title = {Complexation with C\(_{60}\) fullerene increases doxorubicin efficiency against leukemic cells in vitro}, series = {Nanoscale Research Letters}, volume = {14}, journal = {Nanoscale Research Letters}, number = {61}, doi = {10.1186/s11671-019-2894-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228257}, year = {2019}, abstract = {Conventional anticancer chemotherapy is limited because of severe side effects as well as a quickly evolving multidrug resistance of the tumor cells. To address this problem, we have explored a C\(_{60}\) fullerene-based nanosized system as a carrier for anticancer drugs for an optimized drug delivery to leukemic cells.Here, we studied the physicochemical properties and anticancer activity of C\(_{60}\) fullerene noncovalent complexes with the commonly used anticancer drug doxorubicin. C\(_{60}\)-Doxorubicin complexes in a ratio 1:1 and 2:1 were characterized with UV/Vis spectrometry, dynamic light scattering, and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The obtained analytical data indicated that the 140-nm complexes were stable and could be used for biological applications. In leukemic cell lines (CCRF-CEM, Jurkat, THP1 and Molt-16), the nanocomplexes revealed 3.5 higher cytotoxic potential in comparison with the free drug in a range of nanomolar concentrations. Also, the intracellular drug's level evidenced C\(_{60}\) fullerene considerable nanocarrier function.The results of this study indicated that C\(_{60}\) fullerene-based delivery nanocomplexes had a potential value for optimization of doxorubicin efficiency against leukemic cells.}, language = {en} } @article{GuptaSrivastavaOsmanogluetal.2021, author = {Gupta, Shishir K. and Srivastava, Mugdha and Osmanoglu, {\"O}zge and Xu, Zhuofei and Brakhage, Axel A. and Dandekar, Thomas}, title = {Aspergillus fumigatus versus genus Aspergillus: conservation, adaptive evolution and specific virulence genes}, series = {Microorganisms}, volume = {9}, journal = {Microorganisms}, number = {10}, issn = {2076-2607}, doi = {10.3390/microorganisms9102014}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246318}, year = {2021}, abstract = {Aspergillus is an important fungal genus containing economically important species, as well as pathogenic species of animals and plants. Using eighteen fungal species of the genus Aspergillus, we conducted a comprehensive investigation of conserved genes and their evolution. This also allows us to investigate the selection pressure driving the adaptive evolution in the pathogenic species A. fumigatus. Among single-copy orthologs (SCOs) for A. fumigatus and the closely related species A. fischeri, we identified 122 versus 50 positively selected genes (PSGs), respectively. Moreover, twenty conserved genes of unknown function were established to be positively selected and thus important for adaption. A. fumigatus PSGs interacting with human host proteins show over-representation of adaptive, symbiosis-related, immunomodulatory and virulence-related pathways, such as the TGF-β pathway, insulin receptor signaling, IL1 pathway and interfering with phagosomal GTPase signaling. Additionally, among the virulence factor coding genes, secretory and membrane protein-coding genes in multi-copy gene families, 212 genes underwent positive selection and also suggest increased adaptation, such as fungal immune evasion mechanisms (aspf2), siderophore biosynthesis (sidD), fumarylalanine production (sidE), stress tolerance (atfA) and thermotolerance (sodA). These genes presumably contribute to host adaptation strategies. Genes for the biosynthesis of gliotoxin are shared among all the close relatives of A. fumigatus as an ancient defense mechanism. Positive selection plays a crucial role in the adaptive evolution of A. fumigatus. The genome-wide profile of PSGs provides valuable targets for further research on the mechanisms of immune evasion, antimycotic targeting and understanding fundamental virulence processes.}, language = {en} } @article{BencurovaGuptaSarukhanyanetal.2018, author = {Bencurova, Elena and Gupta, Shishir K. and Sarukhanyan, Edita and Dandekar, Thomas}, title = {Identification of antifungal targets based on computer modeling}, series = {Journal of Fungi}, volume = {4}, journal = {Journal of Fungi}, number = {3}, issn = {2309-608X}, doi = {10.3390/jof4030081}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197670}, pages = {81}, year = {2018}, abstract = {Aspergillus fumigatus is a saprophytic, cosmopolitan fungus that attacks patients with a weak immune system. A rational solution against fungal infection aims to manipulate fungal metabolism or to block enzymes essential for Aspergillus survival. Here we discuss and compare different bioinformatics approaches to analyze possible targeting strategies on fungal-unique pathways. For instance, phylogenetic analysis reveals fungal targets, while domain analysis allows us to spot minor differences in protein composition between the host and fungi. Moreover, protein networks between host and fungi can be systematically compared by looking at orthologs and exploiting information from host-pathogen interaction databases. Further data—such as knowledge of a three-dimensional structure, gene expression data, or information from calculated metabolic fluxes—refine the search and rapidly put a focus on the best targets for antimycotics. We analyzed several of the best targets for application to structure-based drug design. Finally, we discuss general advantages and limitations in identification of unique fungal pathways and protein targets when applying bioinformatics tools.}, language = {en} } @article{GrebinykPrylutskaChepurnaetal.2019, author = {Grebinyk, Anna and Prylutska, Svitlana and Chepurna, Oksana and Grebinyk, Sergii and Prylutskyy, Yuriy and Ritter, Uwe and Ohulchanskyy, Tymish Y. and Matyshevska, Olga and Dandekar, Thomas and Frohme, Marcus}, title = {Synergy of chemo- and photodynamic therapies with C\(_{60}\) Fullerene-Doxorubicin nanocomplex}, series = {Nanomaterials}, volume = {9}, journal = {Nanomaterials}, number = {11}, issn = {2079-4991}, doi = {10.3390/nano9111540}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193140}, year = {2019}, abstract = {A nanosized drug complex was explored to improve the efficiency of cancer chemotherapy, complementing it with nanodelivery and photodynamic therapy. For this, nanomolar amounts of a non-covalent nanocomplex of Doxorubicin (Dox) with carbon nanoparticle C\(_{60}\) fullerene (C\(_{60}\)) were applied in 1:1 and 2:1 molar ratio, exploiting C\(_{60}\) both as a drug-carrier and as a photosensitizer. The fluorescence microscopy analysis of human leukemic CCRF-CEM cells, in vitro cancer model, treated with nanocomplexes showed Dox's nuclear and C\(_{60}\)'s extranuclear localization. It gave an opportunity to realize a double hit strategy against cancer cells based on Dox's antiproliferative activity and C\(_{60}\)'s photoinduced pro-oxidant activity. When cells were treated with 2:1 C\(_{60}\)-Dox and irradiated at 405 nm the high cytotoxicity of photo-irradiated C\(_{60}\)-Dox enabled a nanomolar concentration of Dox and C\(_{60}\) to efficiently kill cancer cells in vitro. The high pro-oxidant and pro-apoptotic efficiency decreased IC\(_{50}\) 16, 9 and 7 × 10\(^3\)-fold, if compared with the action of Dox, non-irradiated nanocomplex, and C\(_{60}\)'s photodynamic effect, correspondingly. Hereafter, a strong synergy of therapy arising from the combination of C\(_{60}\)-mediated Dox delivery and C\(_{60}\) photoexcitation was revealed. Our data indicate that a combination of chemo- and photodynamic therapies with C\(_{60}\)-Dox nanoformulation provides a promising synergetic approach for cancer treatment.}, language = {en} } @article{DandekarEisenreich2015, author = {Dandekar, Thomas and Eisenreich, Wolfgang}, title = {Host-adapted metabolism and its regulation in bacterial pathogens}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {5}, journal = {Frontiers in Cellular and Infection Microbiology}, number = {28}, issn = {2235-2988}, doi = {10.3389/fcimb.2015.00028}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196876}, year = {2015}, abstract = {No abstract available.}, language = {en} } @article{DandekarFieselmannFischeretal.2015, author = {Dandekar, Thomas and Fieselmann, Astrid and Fischer, Eva and Popp, Jasmin and Hensel, Michael and Noster, Janina}, title = {Salmonella - how a metabolic generalist adopts an intracellular lifestyle during infection}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {4}, journal = {Frontiers in Cellular and Infection Microbiology}, number = {191}, doi = {10.3389/fcimb.2014.00191}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149029}, year = {2015}, abstract = {The human-pathogenic bacterium Salmonella enterica adjusts and adapts to different environments while attempting colonization. In the course of infection nutrient availabilities change drastically. New techniques, "-omics" data and subsequent integration by systems biology improve our understanding of these changes. We review changes in metabolism focusing on amino acid and carbohydrate metabolism. Furthermore, the adaptation process is associated with the activation of genes of the Salmonella pathogenicity islands (SPIs). Anti-infective strategies have to take these insights into account and include metabolic and other strategies. Salmonella infections will remain a challenge for infection biology.}, language = {en} } @unpublished{Dandekar2022, author = {Dandekar, Thomas}, title = {Qubit transition into defined Bits: A fresh perspective for cosmology and unifying theories}, doi = {10.25972/OPUS-26641}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266418}, pages = {42}, year = {2022}, abstract = {In this view point we do not change cosmology after the hot fireball starts (hence agrees well with observation), but the changed start suggested and resulting later implications lead to an even better fit with current observations (voids, supercluster and galaxy formation; matter and no antimatter) than the standard model with big bang and inflation: In an eternal ocean of qubits, a cluster of qubits crystallizes to defined bits. The universe does not jump into existence ("big bang") but rather you have an eternal ocean of qubits in free super-position of all their quantum states (of any dimension, force field and particle type) as permanent basis. The undefined, boiling vacuum is the real "outside", once you leave our everyday universe. A set of n Qubits in the ocean are "liquid", in very undefined state, they have all their m possibilities for quantum states in free superposition. However, under certain conditions the qubits interact, become defined, and freeze out, crystals form and give rise to a defined, real world with all possible time series and world lines. GR holds only within the crystal. In our universe all n**m quantum possibilities are nicely separated and crystallized out to defined bit states: A toy example with 6 qubits each having 2 states illustrates, this is completely sufficient to encode space using 3 bits for x,y and z, 1 bit for particle type and 2 bits for its state. Just by crystallization, space, particles and their properties emerge from the ocean of qubits, and following the arrow of entropy, time emerges, following an arrow of time and expansion from one corner of the toy universe to everywhere else. This perspective provides time as emergent feature considering entropy: crystallization of each world line leads to defined world lines over their whole existence, while entropy ensures direction of time and higher representation of high entropy states considering the whole crystal and all slices of world lines. The crystal perspective is also economic compared to the Everett-type multiverse, each qubit has its m quantum states and n qubits interacting forming a crystal and hence turning into defined bit states has only n**m states and not more states. There is no Everett-type world splitting with every decision but rather individual world trajectories reside in individual world layers of the crystal. Finally, bit-separated crystals come and go in the qubit ocean, selecting for the ability to lay seeds for new crystals. This self-organizing reproduction selects over generations also for life-friendliness. Mathematical treatment introduces quantum action theory as a framework for a general lattice field theory extending quantum chromo dynamics where scalar fields for color interaction and gravity have to be derived from the permeating qubit-interaction field. Vacuum energy should get appropriately low by the binding properties of the qubit crystal. Connections to loop quantum gravity, string theory and emergent gravity are discussed. Standard physics (quantum computing; crystallization, solid state physics) allow validation tests of this perspective and will extend current results.}, language = {en} } @article{TemmeFriebeSchmidtetal.2017, author = {Temme, Sebastian and Friebe, Daniela and Schmidt, Timo and Poschmann, Gereon and Hesse, Julia and Steckel, Bodo and St{\"u}hler, Kai and Kunz, Meik and Dandekar, Thomas and Ding, Zhaoping and Akhyari, Payam and Lichtenberg, Artur and Schrader, J{\"u}rgen}, title = {Genetic profiling and surface proteome analysis of human atrial stromal cells and rat ventricular epicardium-derived cells reveals novel insights into their cardiogenic potential}, series = {Stem Cell Research}, volume = {25}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2017.11.006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172716}, pages = {183-190}, year = {2017}, abstract = {Epicardium-derived cells (EPDC) and atrial stromal cells (ASC) display cardio-regenerative potential, but the molecular details are still unexplored. Signals which induce activation, migration and differentiation of these cells are largely unknown. Here we have isolated rat ventricular EPDC and rat/human ASC and performed genetic and proteomic profiling. EPDC and ASC expressed epicardial/mesenchymal markers (WT-1, Tbx18, CD73,CD90, CD44, CD105), cardiac markers (Gata4, Tbx5, troponin T) and also contained phosphocreatine. We used cell surface biotinylation to isolate plasma membrane proteins of rEPDC and hASC, Nano-liquid chromatography with subsequent mass spectrometry and bioinformatics analysis identified 396 rat and 239 human plasma membrane proteins with 149 overlapping proteins. Functional GO-term analysis revealed several significantly enriched categories related to extracellular matrix (ECM), cell migration/differentiation, immunology or angiogenesis. We identified receptors for ephrin and growth factors (IGF, PDGF, EGF, anthrax toxin) known to be involved in cardiac repair and regeneration. Functional category enrichment identified clusters around integrins, PI3K/Akt-signaling and various cardiomyopathies. Our study indicates that EPDC and ASC have a similar molecular phenotype related to cardiac healing/regeneration. The cell surface proteome repository will help to further unravel the molecular details of their cardio-regenerative potential and their role in cardiac diseases.}, language = {en} }