@article{MeierMoebusHeigletal.2023, author = {Meier, Johannes P. and M{\"o}bus, Selina and Heigl, Florian and Asbach-Nitzsche, Alexandra and Niller, Hans Helmut and Plentz, Annelie and Avsar, Korkut and Heiß-Neumann, Marion and Schaaf, Bernhard and Cassens, Uwe and Seese, Bernd and Teschner, Daniel and Handzhiev, Sabin and Graf, Uwe and L{\"u}bbert, Christoph and Steinmaurer, Monika and Kontogianni, Konstantina and Berg, Christoph and Maieron, Andreas and Blaas, Stefan H. and Wagner, Ralf and Deml, Ludwig and Barabas, Sascha}, title = {Performance of T-Track\(^®\) TB, a novel dual marker RT-qPCR-based whole-blood test for improved detection of active tuberculosis}, series = {Diagnostics}, volume = {13}, journal = {Diagnostics}, number = {4}, issn = {2075-4418}, doi = {10.3390/diagnostics13040758}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304113}, year = {2023}, abstract = {Tuberculosis (TB) is one of the leading causes of death by an infectious disease. It remains a major health burden worldwide, in part due to misdiagnosis. Therefore, improved diagnostic tests allowing the faster and more reliable diagnosis of patients with active TB are urgently needed. This prospective study examined the performance of the new molecular whole-blood test T-Track\(^®\) TB, which relies on the combined evaluation of IFNG and CXCL10 mRNA levels, and compared it to that of the QuantiFERON\(^®\)-TB Gold Plus (QFT-Plus) enzyme-linked immunosorbent assay (ELISA). Diagnostic accuracy and agreement analyses were conducted on the whole blood of 181 active TB patients and 163 non-TB controls. T-Track\(^®\) TB presented sensitivity of 94.9\% and specificity of 93.8\% for the detection of active TB vs. non-TB controls. In comparison, the QFT-Plus ELISA showed sensitivity of 84.3\%. The sensitivity of T-Track\(^®\) TB was significantly higher (p < 0.001) than that of QFT-Plus. The overall agreement of T-Track\(^®\) TB with QFT-Plus to diagnose active TB was 87.9\%. Out of 21 samples with discordant results, 19 were correctly classified by T-Track\(^®\) TB while misclassified by QFT-Plus (T-Track\(^®\) TB-positive/QFT-Plus-negative), and two samples were misclassified by T-Track\(^®\) TB while correctly classified by QFT-Plus (T-Track\(^®\) TB-negative/QFT-Plus-positive). Our results demonstrate the excellent performance of the T-Track\(^®\) TB molecular assay and its suitability to accurately detect TB infection and discriminate active TB patients from non-infected controls.}, language = {en} } @article{GruenwaldPinkEgereretal.2022, author = {Gr{\"u}nwald, Viktor and Pink, Daniel and Egerer, Gerlinde and Schalk, Enrico and Augustin, Marinela and Deinzer, Christoph K. W. and Kob, Viola and Reichert, Dietmar and Kebenko, Maxim and Brandl, Stephan and Hahn, Dennis and Lindner, Lars H. and Hoiczyk, Mathias and Ringsdorf, Uta and Hanker, Lars C. and Hempel, Dirk and De Rivas, Beatriz and Wismann, Tobias and Ivanyi, Philipp}, title = {Trabectedin for patients with advanced soft tissue sarcoma: a non-interventional, prospective, multicenter, phase IV trial}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {21}, issn = {2072-6694}, doi = {10.3390/cancers14215234}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290898}, year = {2022}, abstract = {This non-interventional, prospective phase IV trial evaluated trabectedin in patients with soft tissue sarcoma (STS) in real-life clinical practice across Germany. The primary endpoints were progression-free survival (PFS) rates at 3 and 6 months, as defined by investigators. Overall, 128 patients from 19 German sites were evaluated for efficacy and 130 for safety. Median age was 58.5 years (range: 23-84) and leiomyosarcoma was the most frequent histotype (n = 45; 35.2\%). Trabectedin was mostly used as second/third-line treatment (n = 91; 71.1\%). Median PFS was 5.2 months (95\% CI: 3.3-6.7), with 60.7\% and 44.5\% of patients free from progression at 3 and 6 months, respectively. Median overall survival was 15.2 months (95\% CI: 9.6-21.4). One patient achieved a complete and 14 patients a partial response, conferring an objective response rate of 11.7\%. Decreases in white blood cells (27.0\% of patients), platelets (16.2\%) and neutrophils (13.1\%) and increased alanine aminotransferase (10.8\%) were the most common trabectedin-related grade 3/4 adverse drug reactions. Two deaths due to pneumonia and sepsis were considered trabectedin-related. Trabectedin confers clinically meaningful activity in patients with multiple STS histotypes, comparable to that previously observed in clinical trials and other non-interventional studies, and with a manageable safety profile.}, language = {en} } @article{LuekeHallerUtpateletal.2022, author = {L{\"u}ke, Florian and Haller, Florian and Utpatel, Kirsten and Krebs, Markus and Meidenbauer, Norbert and Scheiter, Alexander and Spoerl, Silvia and Heudobler, Daniel and Sparrer, Daniela and Kaiser, Ulrich and Keil, Felix and Schubart, Christoph and T{\"o}gel, Lars and Einhell, Sabine and Dietmaier, Wolfgang and Huss, Ralf and Dintner, Sebastian and Sommer, Sebastian and Jordan, Frank and Goebeler, Maria-Elisabeth and Metz, Michaela and Haake, Diana and Scheytt, Mithun and Gerhard-Hartmann, Elena and Maurus, Katja and Br{\"a}ndlein, Stephanie and Rosenwald, Andreas and Hartmann, Arndt and M{\"a}rkl, Bruno and Einsele, Hermann and Mackensen, Andreas and Herr, Wolfgang and Kunzmann, Volker and Bargou, Ralf and Beckmann, Matthias W. and Pukrop, Tobias and Trepel, Martin and Evert, Matthias and Claus, Rainer and Kerscher, Alexander}, title = {Identification of disparities in personalized cancer care — a joint approach of the German WERA consortium}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {20}, issn = {2072-6694}, doi = {10.3390/cancers14205040}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290311}, year = {2022}, abstract = {(1) Background: molecular tumor boards (MTBs) are crucial instruments for discussing and allocating targeted therapies to suitable cancer patients based on genetic findings. Currently, limited evidence is available regarding the regional impact and the outreach component of MTBs; (2) Methods: we analyzed MTB patient data from four neighboring Bavarian tertiary care oncology centers in W{\"u}rzburg, Erlangen, Regensburg, and Augsburg, together constituting the WERA Alliance. Absolute patient numbers and regional distribution across the WERA-wide catchment area were weighted with local population densities; (3) Results: the highest MTB patient numbers were found close to the four cancer centers. However, peaks in absolute patient numbers were also detected in more distant and rural areas. Moreover, weighting absolute numbers with local population density allowed for identifying so-called white spots—regions within our catchment that were relatively underrepresented in WERA MTBs; (4) Conclusions: investigating patient data from four neighboring cancer centers, we comprehensively assessed the regional impact of our MTBs. The results confirmed the success of existing collaborative structures with our regional partners. Additionally, our results help identifying potential white spots in providing precision oncology and help establishing a joint WERA-wide outreach strategy.}, language = {en} }