@article{MukhopadhyaySchleierWirsingetal.2020, author = {Mukhopadhyay, Deb Pratim and Schleier, Domenik and Wirsing, Sara and Ramler, Jaqueline and Kaiser, Dustin and Reusch, Engelbert and Hemberger, Patrick and Preitschopf, Tobias and Krummenacher, Ivo and Engels, Bernd and Fischer, Ingo and Lichtenberg, Crispin}, title = {Methylbismuth: an organometallic bismuthinidene biradical}, series = {Chemical Science}, volume = {11}, journal = {Chemical Science}, number = {29}, doi = {10.1039/D0SC02410D}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251657}, pages = {7562-7568}, year = {2020}, abstract = {We report the generation, spectroscopic characterization, and computational analysis of the first free (non-stabilized) organometallic bismuthinidene, BiMe. The title compound was generated in situ from BiMe\(_3\) by controlled homolytic Bi-C bond cleavage in the gas phase. Its electronic structure was characterized by a combination of photoion mass-selected threshold photoelectron spectroscopy and DFT as well as multi-reference computations. A triplet ground state was identified and an ionization energy (IE) of 7.88 eV was experimentally determined. Methyl abstraction from BiMe\(_3\) to give [BiMe(_2\)]• is a key step in the generation of BiMe. We reaveal a bond dissociation energy of 210 ± 7 kJ mol\(^{-1}\), which is substantially higher than the previously accepted value. Nevertheless, the homolytic cleavage of Me-BiMe\(_2\) bonds could be achieved at moderate temperatures (60-120 °C) in the condensed phase, suggesting that [BiMe\(_2\)]• and BiMe are accessible as reactive intermediates under these conditions.}, subject = {Photoelektronenspektroskopie}, language = {en} } @phdthesis{Kaiser2022, author = {Kaiser, Dustin}, title = {Non-standard computational approaches applied to molecular systems}, doi = {10.25972/OPUS-27664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276641}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In this thesis, several contributions to the understanding and modeling of chemical phenomena using computational approaches are presented. These investigations are characterized by the usage of non-standard computational modeling techniques, which is necessitated by the complex nature of the electronic structure or atomic fluctuations of the target molecules. Multiple biradical-type molecules and their spectroscopic properties were modeled. In the course of the investigation, it is found that especially the impact of correct molecular geometries on the computationally predicted absorption properties may be critical. In order to find the correct minimum geometries, Multi-Reference methods may have to be invoked. The impact of geometry relaxation on the excitonic properties of Perylene Bisimide dimers were investigated. Oftentimes, these geometry factors are neglected in Organic Semiconductor modeling as an approximation. This present investigation suggests that this approximation is not always valid, as certain regimes are identified where geometrical parameters have critical impact on the localization and energetic properties of excitons. The mechanism of the Triazolinedione (TAD) tyrosine bioconjugation reaction is investigated using quantum-chemical methods. By comparison of different conceivable mechanisms and their energetic ordering, the TAD tyrosine bioconjugation is found to proceed by means of a base-mediated electrophilic aromatic substitution reaction. The kth nearest neighbor entropy estimation protocol is investigated. This estimator promises accurate entropy estimates even for flexible molecules with multiple structural minima. Our granular investigation of formal and practical properties of the estimator suggests that the uneven variance of a molecule's vibrational modes is the cause of the observed slow convergence of the estimator. A rescaling procedure to reestablish fast convergence is suggested and benchmarks are performed.}, subject = {Quantenchemie}, language = {en} }