@article{VeniaminovaCespuglioChernukhaetal.2020, author = {Veniaminova, Ekaterina and Cespuglio, Raymond and Chernukha, Irina and Schmitt-Boehrer, Angelika G. and Morozov, Sergey and Kalueff, Allan V. and Kuznetsova, Oxana and Anthony, Daniel C. and Lesch, Klaus-Peter and Strekalova, Tatyana}, title = {Metabolic, Molecular, and Behavioral Effects of Western Diet in Serotonin Transporter-Deficient Mice: Rescue by Heterozygosity?}, series = {Frontiers in Neuroscience}, volume = {14}, journal = {Frontiers in Neuroscience}, issn = {1662-453X}, doi = {10.3389/fnins.2020.00024}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199813}, year = {2020}, abstract = {Reduced function of the serotonin transporter (SERT) is associated with increased susceptibility to anxiety and depression and with type-2 diabetes, which is especially true in older women. Preference for a "Western diet" (WD), enriched with saturated fat, cholesterol, and sugars, may aggravate these conditions. In previous studies, decreased glucose tolerance, central and peripheral inflammation, dyslipidemia, emotional, cognitive, and social abnormalities were reported in WD-fed young female mice. We investigated the metabolic, molecular, and behavioral changes associated with a 3-week-long dietary regime of either the WD or control diet in 12-month-old female mice with three different Sert genotypes: homozygous (Slc6a4) gene knockout (Sert\(^{-/-}\): KO), heterozygous (Sert\(^{+/-}\): HET), or wild-type mice (Sert\(^{+/+}\): WT). In the WT-WD and KO-WD groups, but not in HET-WD-fed mice, most of changes induced by the WD paralleled those found in the younger mice, including brain overexpression of inflammatory marker Toll-like receptor 4 (Tlr4) and impaired hippocampus-dependent performance in the marble test. However, the 12-month-old female mice became obese. Control diet KO mice exhibited impaired hippocampal-dependent behaviors, increased brain expression of the serotonin receptors Htr2c and Htr1b, as well as increased Tlr4 and mitochondrial regulator, peroxisome proliferator-activated receptor gamma-coactivator-1a (Ppargc1a). Paradoxically, these, and other changes, were reversed in KO-WD mutants, suggesting a complex interplay between Sert deficiency and metabolic factors as well as potential compensatory molecular mechanisms that might be disrupted by the WD exposure. Most, but not all, of the changes in gene expression in the brain and liver of KO mice were not exhibited by the HET mice fed with either diet. Some of the WD-induced changes were similar in the KO-WD and HET-WD-fed mice, but the latter displayed a "rescued" phenotype in terms of diet-induced abnormalities in glucose tolerance, neuroinflammation, and hippocampus-dependent performance. Thus, complete versus partial Sert inactivation in aged mice results in distinct metabolic, molecular, and behavioral consequences in response to the WD. Our findings show that Sert\(^{+/-}\) mice are resilient to certain environmental challenges and support the concept of heterosis as evolutionary adaptive mechanism.}, language = {en} } @article{SvirinVeniaminovaCostaNunesetal.2022, author = {Svirin, Evgeniy and Veniaminova, Ekaterina and Costa-Nunes, Jo{\~a}o Pedro and Gorlova, Anna and Umriukhin, Aleksei and Kalueff, Allan V. and Proshin, Andrey and Anthony, Daniel C. and Nedorubov, Andrey and Tse, Anna Chung Kwan and Walitza, Susanne and Lim, Lee Wei and Lesch, Klaus-Peter and Strekalova, Tatyana}, title = {Predation stress causes excessive aggression in female mice with partial genetic inactivation of tryptophan hydroxylase-2: evidence for altered myelination-related processes}, series = {Cells}, volume = {11}, journal = {Cells}, number = {6}, issn = {2073-4409}, doi = {10.3390/cells11061036}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267250}, year = {2022}, abstract = {The interaction between brain serotonin (5-HT) deficiency and environmental adversity may predispose females to excessive aggression. Specifically, complete inactivation of the gene encoding tryptophan hydroxylase-2 (Tph2) results in the absence of neuronal 5-HT synthesis and excessive aggressiveness in both male and female null mutant (Tph2\(^{-/-}\)) mice. In heterozygous male mice (Tph2\(^{+/-}\)), there is a moderate reduction in brain 5-HT levels, and when they are exposed to stress, they exhibit increased aggression. Here, we exposed female Tph2\(^{+/-}\) mice to a five-day rat predation stress paradigm and assessed their emotionality and social interaction/aggression-like behaviors. Tph2\(^{+/-}\) females exhibited excessive aggression and increased dominant behavior. Stressed mutants displayed altered gene expression of the 5-HT receptors Htr1a and Htr2a, glycogen synthase kinase-3 β (GSK-3β), and c-fos as well as myelination-related transcripts in the prefrontal cortex: myelin basic protein (Mbp), proteolipid protein 1 (Plp1), myelin-associated glycoprotein (Mag), and myelin oligodendrocyte glycoprotein (Mog). The expression of the plasticity markers synaptophysin (Syp) and cAMP response element binding protein (Creb), but not AMPA receptor subunit A2 (GluA2), were affected by genotype. Moreover, in a separate experiment, na{\"i}ve female Tph2\(^{+/-}\) mice showed signs of enhanced stress resilience in the modified swim test with repeated swimming sessions. Taken together, the combination of a moderate reduction in brain 5-HT with environmental challenges results in behavioral changes in female mice that resemble the aggression-related behavior and resilience seen in stressed male mutants; additionally, the combination is comparable to the phenotype of null mutants lacking neuronal 5-HT. Changes in myelination-associated processes are suspected to underpin the molecular mechanisms leading to aggressive behavior.}, language = {en} }