@article{EmmertKneisel2017, author = {Emmert, Adrian and Kneisel, Christof}, title = {Internal structure of two alpine rock glaciers investigated by quasi-3-D electrical resistivity imaging}, series = {The Cryosphere}, volume = {11}, journal = {The Cryosphere}, doi = {10.5194/tc-11-841-2017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157569}, pages = {841-855}, year = {2017}, abstract = {Interactions between different formative processes are reflected in the internal structure of rock glaciers. Therefore, the detection of subsurface conditions can help to enhance our understanding of landform development. For an assessment of subsurface conditions, we present an analysis of the spatial variability of active layer thickness, ground ice content and frost table topography for two different rock glaciers in the Eastern Swiss Alps by means of quasi-3-D electrical resistivity imaging (ERI). This approach enables an extensive mapping of subsurface structures and a spatial overlay between site-specific surface and subsurface characteristics. At Nair rock glacier, we discovered a gradual descent of the frost table in a downslope direction and a constant decrease of ice content which follows the observed surface topography. This is attributed to ice formation by refreezing meltwater from an embedded snow bank or from a subsurface ice patch which reshapes the permafrost layer. The heterogeneous ground ice distribution at Uertsch rock glacier indicates that multiple processes on different time domains were involved in the development. Resistivity values which represent frozen conditions vary within a wide range and indicate a successive formation which includes several advances, past glacial overrides and creep processes on the rock glacier surface. In combination with the observed topography, quasi-3-D ERI enables us to delimit areas of extensive and compressive flow in close proximity. Excellent data quality was provided by a good coupling of electrodes to the ground in the pebbly material of the investigated rock glaciers. Results show the value of the quasi-3-D ERI approach but advise the application of complementary geophysical methods for interpreting the results.}, language = {en} } @phdthesis{Emmert2020, author = {Emmert, Adrian Alexander}, title = {The Internal Structure of Periglacial Landforms - Assessments of Subsurface Variations in Permafrost-related and Frost-related Phenomena by Multi-dimensional Geophysical Investigations}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-138-9}, doi = {10.25972/WUP-978-3-95826-139-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202437}, school = {W{\"u}rzburg University Press}, pages = {xix, 167}, year = {2020}, abstract = {The internal structure of periglacial landforms contains valuable information on past and present environmental conditions. To benefit from this archive, however, an enhanced understanding of subsurface variations is crucial. This enables to assess the influence of the internal structure on prevailing process regimes and to evaluate the sensitivity of different landform units to environmental changes. This thesis investigates structural variations in the subsurface of (i) rock glaciers,(ii) solifluction lobes, (iii) palsas/ lithalsas and (iv) patterned ground, which occur between the different landform types, but also between landform units of the same type. Investigated variables comprise (i) the spatial distribution of permafrost, (ii) ground ice content, (iii) the origin of ground ice, (iv) thickness of the active layer and (v) frost table topography. Multi-dimensional investigations by the geophysical methods Electrical Resistivity Imaging (ERI) and Ground-Penetrating Radar (GPR) were performed in six study areas (a-f): four of them are located in high-alpine environments in Switzerland and two of them are located in the subarctic highlands of Iceland. Additionally, surface and subsurface temperature values were continuously recorded at selected study sites. At one study site, pF-values, representing the matric potential (or water potential), were recorded. From a methodological view, this thesis focuses on the application of quasi-3-D ERI, an approach in which many two-dimensional data sets are combined to create one three-dimensional data set. This permits e.g., a three-dimensional delimitation of subsurface structures and a spatial investigation of the distribution of ground ice. Besides the analysis of field data, this thesis incudes a comparison between inversion models produced with different software products, based on two synthetic data sets. The detection of resistivity structures and reflection patterns provides valuable insights into the internal structure of the investigated landform units: At the high-alpine study site at (a) Piz Nair, a highly variable ice content indicates a complex development of the investigated rock glacier assembly. The local formation of ground ice is attributed to an embedding of surface patches of snow or ice into the subsurface by rockfall. Results of geoelectric monitoring surveys on selected rock glaciers show the influence of seasonal alterations in the internal structure on subsurface meltwater flow. At the study site at (b) Piz {\"U}ertsch, results indicate the occurrences of isolated ground ice patches in a significantly larger rock glacier. Detected characteristics of the internal structure enable to reconstruct the development of the rock glacier, in which a temporary override of an adjacent glacier tongue on the rock glacier is considered crucial for the current distribution of ground ice. However, results of this thesis clearly show the absence of buried glacier ice in the subsurface of the rock glacier. Results from a rock glacier near the (c) Las Trais Fluors mountain ridge affirm the existence of a water-permeable frozen layer, which was assumed in previous studies. Furthermore, results show that the rock glacier contains large amounts of rockfall deposits. A joint interpretation of ERI and GPR results from the investigated scree slope at the mountain (d) Blauberg (Furka Pass) reveals characteristic structures in the subsurface, which enable a differentiation between solifluction lobes and pebbly rock glaciers. At the subarctic study site (e) Orravatnsr{\´u}stir, results show that the internal structure of palsas can be used to deduce their current development stage and to assess past and future developments. Presented results affirm a long history of palsa development at the study site, as assumed in previous studies, but indicate recently changing environmental conditions. The investigated occurrences of patterned ground in the proglacial area of the glacier (f) Hofsj{\"o}kull are currently not influenced by the detected occurrence of permafrost, according to the presented results. Therefore, a temporary formation of pattered ground is assumed, which is linked to the retreat of the glacier. This thesis shows discrepancies between the internal structure of some of the investigated landform units and the recent environmental conditions. This indicates a delayed adaption and a low sensitivity of the landform units to environmental changes. Findings indicate that the future development of permafrost will be strongly affected by variations in snowfall. Furthermore, the detection of isolated occurrences of ground ice at several study sites contradicts the widely assumed effectivity of balancing heat fluxes to create homogenous subsurface conditions in relatively fine-grained subsurface materials.}, subject = {Permafrost}, language = {en} } @article{EmmertKneisel2021, author = {Emmert, Adrian and Kneisel, Christof}, title = {Internal structure and palsa development at Orravatnsr{\´u}stir Palsa Site (Central Iceland), investigated by means of integrated resistivity and ground-penetrating radar methods}, series = {Permafrost and Periglacial Processes}, volume = {32}, journal = {Permafrost and Periglacial Processes}, number = {3}, doi = {10.1002/ppp.2106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238933}, pages = {503 -- 519}, year = {2021}, abstract = {The natural cyclical development of palsas makes it difficult to use visible signs of decay as reference points for environmental change. Thus, to determine the actual development stage of a palsa, investigations of the internal structure are crucial. Our study presents 2-D and 3-D electrical resistivity imaging (ERI) and 2-D ground-penetrating radar (GPR) results, measurements of surface and subsurface temperatures, and of the soil matric potential from Orravatnsr{\´u}stir Palsa Site in Central Iceland. By a joint interpretation of the results, we deduce the internal structure (i.e., thickness of thaw zone and permafrost, ice/water content) of five palsas of different size and shape. The results differentiate between initial and mature development stages and show that palsas of different development stages can exist in close proximity. While internal characteristics indicate undisturbed development of four palsas, one palsa shows indications of environmental change. Our study shows the value of the multimethod geophysical approach and introduces measurements of the soil matric potential as a promising method to assess the current state of the subsurface.}, language = {en} }