@article{BakirciFrankGumbeletal.2021, author = {Bakirci, Ezgi and Frank, Andreas and Gumbel, Simon and Otto, Paul F. and F{\"u}rsattel, Eva and Tessmer, Ingrid and Schmidt, Hans-Werner and Dalton, Paul D.}, title = {Melt Electrowriting of Amphiphilic Physically Crosslinked Segmented Copolymers}, series = {Macromolecular Chemistry and Physics}, volume = {222}, journal = {Macromolecular Chemistry and Physics}, number = {22}, doi = {10.1002/macp.202100259}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257572}, year = {2021}, abstract = {Various (AB)\(_{n}\) and (ABAC)\(_{n}\) segmented copolymers with hydrophilic and hydrophobic segments are processed via melt electrowriting (MEW). Two different (AB)\(_{n}\) segmented copolymers composed of bisurea segments and hydrophobic poly(dimethyl siloxane) (PDMS) or hydrophilic poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) (PPO-PEG-PPO) segments, while the amphiphilic (ABAC)\(_{n}\) segmented copolymers consist of bisurea segments in the combination of hydrophobic PDMS segments and hydrophilic PPO-PEG-PPO segments with different ratios, are explored. All copolymer compositions are processed using the same conditions, including nozzle temperature, applied voltage, and collector distance, while changes in applied pressure and collector speed altered the fiber diameter in the range of 7 and 60 µm. All copolymers showed excellent processability with MEW, well-controlled fiber stacking, and inter-layer bonding. Notably, the surfaces of all four copolymer fibers are very smooth when visualized using scanning electron microscopy. However, the fibers show different roughness demonstrated with atomic force microscopy. The non-cytotoxic copolymers increased L929 fibroblast attachment with increasing PDMS content while the different copolymer compositions result in a spectrum of physical properties.}, language = {en} }