@article{DejungSubotaBuceriusetal.2016, author = {Dejung, Mario and Subota, Ines and Bucerius, Ferdinand and Dindar, G{\"u}lcin and Freiwald, Anja and Engstler, Markus and Boshart, Michael and Butter, Falk and Janzen, Chistian J.}, title = {Quantitative proteomics uncovers novel factors involved in developmental differentiation of Trypanosoma brucei}, series = {PLoS Pathogens}, volume = {12}, journal = {PLoS Pathogens}, number = {2}, doi = {10.1371/journal.ppat.1005439}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146362}, pages = {e1005439}, year = {2016}, abstract = {Developmental differentiation is a universal biological process that allows cells to adapt to different environments to perform specific functions. African trypanosomes progress through a tightly regulated life cycle in order to survive in different host environments when they shuttle between an insect vector and a vertebrate host. Transcriptomics has been useful to gain insight into RNA changes during stage transitions; however, RNA levels are only a moderate proxy for protein abundance in trypanosomes. We quantified 4270 protein groups during stage differentiation from the mammalian-infective to the insect form and provide classification for their expression profiles during development. Our label-free quantitative proteomics study revealed previously unknown components of the differentiation machinery that are involved in essential biological processes such as signaling, posttranslational protein modifications, trafficking and nuclear transport. Furthermore, guided by our proteomic survey, we identified the cause of the previously observed differentiation impairment in the histone methyltransferase DOT1B knock-out strain as it is required for accurate karyokinesis in the first cell division during differentiation. This epigenetic regulator is likely involved in essential chromatin restructuring during developmental differentiation, which might also be important for differentiation in higher eukaryotic cells. Our proteome dataset will serve as a resource for detailed investigations of cell differentiation to shed more light on the molecular mechanisms of this process in trypanosomes and other eukaryotes.}, language = {en} } @article{HornburgDrepperButteretal.2014, author = {Hornburg, Daniel and Drepper, Carsten and Butter, Falk and Meissner, Felix and Sendtner, Michael and Mann, Matthias}, title = {Deep Proteomic Evaluation of Primary and Cell Line Motoneuron Disease Models Delineates Major Differences in Neuronal Characteristics*}, series = {Molecular \& Cellular Proteomics : MCP}, volume = {13}, journal = {Molecular \& Cellular Proteomics : MCP}, number = {12}, issn = {1535-9484}, doi = {10.1074/mcp.M113.037291}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120954}, pages = {3410-20}, year = {2014}, abstract = {The fatal neurodegenerative disorders amyotrophic lateral sclerosis and spinal muscular atrophy are, respectively, the most common motoneuron disease and genetic cause of infant death. Various in vitro model systems have been established to investigate motoneuron disease mechanisms, in particular immortalized cell lines and primary neurons. Using quantitative mass-spectrometry-based proteomics, we compared the proteomes of primary motoneurons to motoneuron-like cell lines NSC-34 and N2a, as well as to non-neuronal control cells, at a depth of 10,000 proteins. We used this resource to evaluate the suitability of murine in vitro model systems for cell biological and biochemical analysis of motoneuron disease mechanisms. Individual protein and pathway analysis indicated substantial differences between motoneuron-like cell lines and primary motoneurons, especially for proteins involved in differentiation, cytoskeleton, and receptor signaling, whereas common metabolic pathways were more similar. The proteins associated with amyotrophic lateral sclerosis also showed distinct differences between cell lines and primary motoneurons, providing a molecular basis for understanding fundamental alterations between cell lines and neurons with respect to neuronal pathways with relevance for disease mechanisms. Our study provides a proteomics resource for motoneuron research and presents a paradigm of how mass-spectrometry-based proteomics can be used to evaluate disease model systems.}, language = {en} } @article{ReisSchwebsDietzetal.2018, author = {Reis, Helena and Schwebs, Marie and Dietz, Sabrina and Janzen, Christian J. and Butter, Falk}, title = {TelAP1 links telomere complexes with developmental expression site silencing in African trypanosomes}, series = {Nucleic Acids Research}, volume = {46}, journal = {Nucleic Acids Research}, number = {6}, doi = {10.1093/nar/gky028}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225180}, pages = {2820-2833}, year = {2018}, abstract = {During its life cycle, Trypanosoma brucei shuttles between a mammalian host and the tsetse fly vector. In the mammalian host, immune evasion of T. brucei bloodstream form (BSF) cells relies on antigenic variation, which includes monoallelic expression and periodic switching of variant surface glycoprotein (VSG) genes. The active VSG is transcribed from only 1 of the 15 subtelomeric expression sites (ESs). During differentiation from BSF to the insect-resident procyclic form (PCF), the active ES is transcriptionally silenced. We used mass spectrometry-based interactomics to determine the composition of telomere protein complexes in T. brucei BSF and PCF stages to learn more about the structure and functions of telomeres in trypanosomes. Our data suggest a different telomere complex composition in the two forms of the parasite. One of the novel telomere-associated proteins, TelAP1, forms a complex with telomeric proteins TbTRF, TbRAP1 and TbTIF2 and influences ES silencing kinetics during developmental differentiation.}, language = {en} } @article{CicovaDejungSkalickyetal.2016, author = {Cicova, Zdenka and Dejung, Mario and Skalicky, Tomas and Eisenhuth, Nicole and Hanselmann, Steffen and Morriswood, Brooke and Figueiredo, Luisa M. and Butter, Falk and Janzen, Christian J.}, title = {Two flagellar BAR domain proteins in Trypanosoma brucei with stage-specific regulation}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep35826}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181021}, year = {2016}, abstract = {Trypanosomes are masters of adaptation to different host environments during their complex life cycle. Large-scale proteomic approaches provide information on changes at the cellular level, and in a systematic way. However, detailed work on single components is necessary to understand the adaptation mechanisms on a molecular level. Here, we have performed a detailed characterization of a bloodstream form (BSF) stage-specific putative flagellar host adaptation factor Tb927.11.2400, identified previously in a SILAC-based comparative proteome study. Tb927.11.2400 shares 38\% amino acid identity with TbFlabarin (Tb927.11.2410), a procyclic form (PCF) stage-specific flagellar BAR domain protein. We named Tb927.11.2400 TbFlabarin-like (TbFlabarinL), and demonstrate that it originates from a gene duplication event, which occurred in the African trypanosomes. TbFlabarinL is not essential for the growth of the parasites under cell culture conditions and it is dispensable for developmental differentiation from BSF to the PCF in vitro. We generated TbFlabarinL-specific antibodies, and showed that it localizes in the flagellum. Co-immunoprecipitation experiments together with a biochemical cell fractionation suggest a dual association of TbFlabarinL with the flagellar membrane and the components of the paraflagellar rod.}, language = {en} } @article{VellmerHartlebFraderaSolaetal.2022, author = {Vellmer, Tim and Hartleb, Laura and Fradera Sola, Albert and Kramer, Susanne and Meyer-Natus, Elisabeth and Butter, Falk and Janzen, Christian J.}, title = {A novel SNF2 ATPase complex in Trypanosoma brucei with a role in H2A.Z-mediated chromatin remodelling}, series = {PLoS Pathogens}, volume = {18}, journal = {PLoS Pathogens}, number = {6}, doi = {10.1371/journal.ppat.1010514}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301372}, year = {2022}, abstract = {A cascade of histone acetylation events with subsequent incorporation of a histone H2A variant plays an essential part in transcription regulation in various model organisms. A key player in this cascade is the chromatin remodelling complex SWR1, which replaces the canonical histone H2A with its variant H2A.Z. Transcriptional regulation of polycistronic transcription units in the unicellular parasite Trypanosoma brucei has been shown to be highly dependent on acetylation of H2A.Z, which is mediated by the histone-acetyltransferase HAT2. The chromatin remodelling complex which mediates H2A.Z incorporation is not known and an SWR1 orthologue in trypanosomes has not yet been reported. In this study, we identified and characterised an SWR1-like remodeller complex in T. brucei that is responsible for Pol II-dependent transcriptional regulation. Bioinformatic analysis of potential SNF2 DEAD/Box helicases, the key component of SWR1 complexes, identified a 1211 amino acids-long protein that exhibits key structural characteristics of the SWR1 subfamily. Systematic protein-protein interaction analysis revealed the existence of a novel complex exhibiting key features of an SWR1-like chromatin remodeller. RNAi-mediated depletion of the ATPase subunit of this complex resulted in a significant reduction of H2A.Z incorporation at transcription start sites and a subsequent decrease of steady-state mRNA levels. Furthermore, depletion of SWR1 and RNA-polymerase II (Pol II) caused massive chromatin condensation. The potential function of several proteins associated with the SWR1-like complex and with HAT2, the key factor of H2A.Z incorporation, is discussed.}, language = {en} } @article{BakariSoaleIkengaScheibeetal.2021, author = {Bakari-Soale, Majeed and Ikenga, Nonso Josephat and Scheibe, Marion and Butter, Falk and Jones, Nicola G. and Kramer, Susanne and Engstler, Markus}, title = {The nucleolar DExD/H protein Hel66 is involved in ribosome biogenesis in Trypanosoma brucei}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-97020-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-263872}, year = {2021}, abstract = {The biosynthesis of ribosomes is a complex cellular process involving ribosomal RNA, ribosomal proteins and several further trans-acting factors. DExD/H box proteins constitute the largest family of trans-acting protein factors involved in this process. Several members of this protein family have been directly implicated in ribosome biogenesis in yeast. In trypanosomes, ribosome biogenesis differs in several features from the process described in yeast. Here, we have identified the DExD/H box helicase Hel66 as being involved in ribosome biogenesis. The protein is unique to Kinetoplastida, localises to the nucleolus and its depletion via RNAi caused a severe growth defect. Loss of the protein resulted in a decrease of global translation and accumulation of rRNA processing intermediates for both the small and large ribosomal subunits. Only a few factors involved in trypanosome rRNA biogenesis have been described so far and our findings contribute to gaining a more comprehensive picture of this essential process.}, language = {en} } @article{LealSchwebsBriggsetal.2020, author = {Leal, Andrea Zurita and Schwebs, Marie and Briggs, Emma and Weisert, Nadine and Reis, Helena and Lemgruber, Leondro and Luko, Katarina and Wilkes, Jonathan and Butter, Falk and McCulloch, Richard and Janzen, Christian J.}, title = {Genome maintenance functions of a putative Trypanosoma brucei translesion DNA polymerase include telomere association and a role in antigenic variation}, series = {Nucleic Acids Research}, volume = {48}, journal = {Nucleic Acids Research}, number = {17}, doi = {10.1093/nar/gkaa686}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230579}, pages = {9660-9680}, year = {2020}, abstract = {Maintenance of genome integrity is critical to guarantee transfer of an intact genome from parent to off-spring during cell division. DNA polymerases (Pols) provide roles in both replication of the genome and the repair of a wide range of lesions. Amongst replicative DNA Pols, translesion DNA Pols play a particular role: replication to bypass DNA damage. All cells express a range of translesion Pols, but little work has examined their function in parasites, including whether the enzymes might contribute to host-parasite interactions. Here, we describe a dual function of one putative translesion Pol in African trypanosomes, which we now name TbPolIE. Previously, we demonstrated that TbPolIE is associated with telomeric sequences and here we show that RNAi-mediated depletion of TbPolIE transcripts results in slowed growth, altered DNA content, changes in cell morphology, and increased sensitivity to DNA damaging agents. We also show that TbPolIE displays pronounced localization at the nuclear periphery, and that its depletion leads to chromosome segregation defects and increased levels of endogenous DNA damage. Finally, we demonstrate that TbPolIE depletion leads to deregulation of telomeric variant surface glycoprotein genes, linking the function of this putative translesion DNA polymerase to host immune evasion by antigenic variation.}, language = {en} } @article{GoosDejungJanzenetal.2017, author = {Goos, Carina and Dejung, Mario and Janzen, Christian J. and Butter, Falk and Kramer, Susanne}, title = {The nuclear proteome of Trypanosoma brucei}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {7}, doi = {10.1371/journal.pone.0181884}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158572}, pages = {e0181884}, year = {2017}, abstract = {Trypanosoma brucei is a protozoan flagellate that is transmitted by tsetse flies into the mammalian bloodstream. The parasite has a huge impact on human health both directly by causing African sleeping sickness and indirectly, by infecting domestic cattle. The biology of trypanosomes involves some highly unusual, nuclear-localised processes. These include polycistronic transcription without classical promoters initiated from regions defined by histone variants, trans-splicing of all transcripts to the exon of a spliced leader RNA, transcription of some very abundant proteins by RNA polymerase I and antigenic variation, a switch in expression of the cell surface protein variants that allows the parasite to resist the immune system of its mammalian host. Here, we provide the nuclear proteome of procyclic Trypanosoma brucei, the stage that resides within the tsetse fly midgut. We have performed quantitative label-free mass spectrometry to score 764 significantly nuclear enriched proteins in comparison to whole cell lysates. A comparison with proteomes of several experimentally characterised nuclear and non-nuclear structures and pathways confirmed the high quality of the dataset: the proteome contains about 80\% of all nuclear proteins and less than 2\% false positives. Using motif enrichment, we found the amino acid sequence KRxR present in a large number of nuclear proteins. KRxR is a sub-motif of a classical eukaryotic monopartite nuclear localisation signal and could be responsible for nuclear localization of proteins in Kinetoplastida species. As a proof of principle, we have confirmed the nuclear localisation of six proteins with previously unknown localisation by expressing eYFP fusion proteins. While proteome data of several T. brucei organelles have been published, our nuclear proteome closes an important gap in knowledge to study trypanosome biology, in particular nuclear-related processes.}, language = {en} } @article{GoosDejungWehmanetal.2019, author = {Goos, Carina and Dejung, Mario and Wehman, Ann M. and M-Natus, Elisabeth and Schmidt, Johannes and Sunter, Jack and Engstler, Markus and Butter, Falk and Kramer, Susanne}, title = {Trypanosomes can initiate nuclear export co-transcriptionally}, series = {Nucleic Acids Research}, volume = {47}, journal = {Nucleic Acids Research}, number = {1}, doi = {10.1093/nar/gky1136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177709}, pages = {266-282}, year = {2019}, abstract = {The nuclear envelope serves as important messenger RNA (mRNA) surveillance system. In yeast and human, several control systems act in parallel to prevent nuclear export of unprocessed mRNAs. Trypanosomes lack homologues to most of the involved proteins and their nuclear mRNA metabolism is non-conventional exemplified by polycistronic transcription and mRNA processing by trans-splicing. We here visualized nuclear export in trypanosomes by intra- and intermolecular multi-colour single molecule FISH. We found that, in striking contrast to other eukaryotes, the initiation of nuclear export requires neither the completion of transcription nor splicing. Nevertheless, we show that unspliced mRNAs are mostly prevented from reaching the nucleus-distant cytoplasm and instead accumulate at the nuclear periphery in cytoplasmic nuclear periphery granules (NPGs). Further characterization of NPGs by electron microscopy and proteomics revealed that the granules are located at the cytoplasmic site of the nuclear pores and contain most cytoplasmic RNA-binding proteins but none of the major translation initiation factors, consistent with a function in preventing faulty mRNAs from reaching translation. Our data indicate that trypanosomes regulate the completion of nuclear export, rather than the initiation. Nuclear export control remains poorly understood, in any organism, and the described way of control may not be restricted to trypanosomes.}, language = {en} } @article{EisenhuthVellmerRauhetal.2021, author = {Eisenhuth, Nicole and Vellmer, Tim and Rauh, Elisa T. and Butter, Falk and Janzen, Christian J.}, title = {A DOT1B/Ribonuclease H2 Protein Complex Is Involved in R-Loop Processing, Genomic Integrity, and Antigenic Variation in Trypanosoma brucei}, series = {mbio}, volume = {12}, journal = {mbio}, number = {6}, doi = {10.1128/mBio.01352-21}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260698}, pages = {e01352-21}, year = {2021}, abstract = {The parasite Trypanosoma brucei periodically changes the expression of protective variant surface glycoproteins (VSGs) to evade its host's immune sys-tem in a process known as antigenic variation. One route to change VSG expres-sion is the transcriptional activation of a previously silent VSG expression site (ES), a subtelomeric region containing the VSG genes. Homologous recombination of a different VSG from a large reservoir into the active ES represents another route. The conserved histone methyltransferase DOT1B is involved in transcriptional silencing of inactive ES and influences ES switching kinetics. The molecular machin-ery that enables DOT1B to execute these regulatory functions remains elusive, however. To better understand DOT1B-mediated regulatory processes, we purified DOT1B-associated proteins using complementary biochemical approaches. We iden-tified several novel DOT1B interactors. One of these was the RNase H2 complex, previously shown to resolve RNA-DNA hybrids, maintain genome integrity, and play a role in antigenic variation. Our study revealed that DOT1B depletion results in an increase in RNA-DNA hybrids, accumulation of DNA damage, and ES switch-ing events. Surprisingly, a similar pattern of VSG deregulation was observed in RNase H2 mutants. We propose that both proteins act together in resolving R-loops to ensure genome integrity and contribute to the tightly regulated process of anti-genic variation.}, language = {en} }