@phdthesis{Oberdorf2022, author = {Oberdorf, Felix}, title = {Design and Evaluation of Data-Driven Enterprise Process Monitoring Systems}, doi = {10.25972/OPUS-29853}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298531}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Increasing global competition forces organizations to improve their processes to gain a competitive advantage. In the manufacturing sector, this is facilitated through tremendous digital transformation. Fundamental components in such digitalized environments are process-aware information systems that record the execution of business processes, assist in process automation, and unlock the potential to analyze processes. However, most enterprise information systems focus on informational aspects, process automation, or data collection but do not tap into predictive or prescriptive analytics to foster data-driven decision-making. Therefore, this dissertation is set out to investigate the design of analytics-enabled information systems in five independent parts, which step-wise introduce analytics capabilities and assess potential opportunities for process improvement in real-world scenarios. To set up and extend analytics-enabled information systems, an essential prerequisite is identifying success factors, which we identify in the context of process mining as a descriptive analytics technique. We combine an established process mining framework and a success model to provide a structured approach for assessing success factors and identifying challenges, motivations, and perceived business value of process mining from employees across organizations as well as process mining experts and consultants. We extend the existing success model and provide lessons for business value generation through process mining based on the derived findings. To assist the realization of process mining enabled business value, we design an artifact for context-aware process mining. The artifact combines standard process logs with additional context information to assist the automated identification of process realization paths associated with specific context events. Yet, realizing business value is a challenging task, as transforming processes based on informational insights is time-consuming. To overcome this, we showcase the development of a predictive process monitoring system for disruption handling in a production environment. The system leverages state-of-the-art machine learning algorithms for disruption type classification and duration prediction. It combines the algorithms with additional organizational data sources and a simple assignment procedure to assist the disruption handling process. The design of such a system and analytics models is a challenging task, which we address by engineering a five-phase method for predictive end-to-end enterprise process network monitoring leveraging multi-headed deep neural networks. The method facilitates the integration of heterogeneous data sources through dedicated neural network input heads, which are concatenated for a prediction. An evaluation based on a real-world use-case highlights the superior performance of the resulting multi-headed network. Even the improved model performance provides no perfect results, and thus decisions about assigning agents to solve disruptions have to be made under uncertainty. Mathematical models can assist here, but due to complex real-world conditions, the number of potential scenarios massively increases and limits the solution of assignment models. To overcome this and tap into the potential of prescriptive process monitoring systems, we set out a data-driven approximate dynamic stochastic programming approach, which incorporates multiple uncertainties for an assignment decision. The resulting model has significant performance improvement and ultimately highlights the particular importance of analytics-enabled information systems for organizational process improvement.}, subject = {Operations Management}, language = {en} }