@techreport{MetzgerSchroederRafetseder2021, type = {Working Paper}, author = {Metzger, Florian and Schr{\"o}der, Svenja and Rafetseder, Albert}, title = {Subjective And Objective Assessment Of Video Game Context Factors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242471}, pages = {7}, year = {2021}, abstract = {The recently published ITU-T Recommendation G1.032 proposes a list of factors that may influence cloud and online gaming Quality of Experience (QoE). This paper provides two practical evaluations of proposed system and context influence factors: First, it investigates through an online survey (n=488) the popularity of platforms, preferred ways of distribution, and motivational aspects including subjective valuations of characteristics offered by today's prevalent gaming platforms. Second, the paper evaluates a large dataset of objective metrics for various gaming platforms: game lists, playthrough lengths, prices, etc., and contrasts these metrics against the gamers' opinions. The combined data-driven approach presented in this paper complements in-person and lab studies usually employed.}, subject = {Videospiel}, language = {en} } @article{Trujillo‐VieraEl‐MerahbiSchmidtetal.2021, author = {Trujillo-Viera, Jonathan and El-Merahbi, Rabih and Schmidt, Vanessa and Karwen, Till and Loza-Valdes, Angel and Strohmeyer, Akim and Reuter, Saskia and Noh, Minhee and Wit, Magdalena and Hawro, Izabela and Mocek, Sabine and Fey, Christina and Mayer, Alexander E. and L{\"o}ffler, Mona C. and Wilhelmi, Ilka and Metzger, Marco and Ishikawa, Eri and Yamasaki, Sho and Rau, Monika and Geier, Andreas and Hankir, Mohammed and Seyfried, Florian and Klingenspor, Martin and Sumara, Grzegorz}, title = {Protein Kinase D2 drives chylomicron-mediated lipid transport in the intestine and promotes obesity}, series = {EMBO Molecular Medicine}, volume = {13}, journal = {EMBO Molecular Medicine}, number = {5}, doi = {10.15252/emmm.202013548}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239018}, year = {2021}, abstract = {Lipids are the most energy-dense components of the diet, and their overconsumption promotes obesity and diabetes. Dietary fat content has been linked to the lipid processing activity by the intestine and its overall capacity to absorb triglycerides (TG). However, the signaling cascades driving intestinal lipid absorption in response to elevated dietary fat are largely unknown. Here, we describe an unexpected role of the protein kinase D2 (PKD2) in lipid homeostasis. We demonstrate that PKD2 activity promotes chylomicron-mediated TG transfer in enterocytes. PKD2 increases chylomicron size to enhance the TG secretion on the basolateral side of the mouse and human enterocytes, which is associated with decreased abundance of APOA4. PKD2 activation in intestine also correlates positively with circulating TG in obese human patients. Importantly, deletion, inactivation, or inhibition of PKD2 ameliorates high-fat diet-induced obesity and diabetes and improves gut microbiota profile in mice. Taken together, our findings suggest that PKD2 represents a key signaling node promoting dietary fat absorption and may serve as an attractive target for the treatment of obesity.}, language = {en} }