@article{KasimirToomeyLiuetal.2022, author = {Kasimir, Francesca and Toomey, Danny and Liu, Zheng and Kaiping, Agnes C. and Ariza, Maria Eugenia and Prusty, Bhupesh K.}, title = {Tissue specific signature of HHV-6 infection in ME/CFS}, series = {Frontiers in Molecular Biosciences}, volume = {9}, journal = {Frontiers in Molecular Biosciences}, issn = {2296-889X}, doi = {10.3389/fmolb.2022.1044964}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299433}, year = {2022}, abstract = {First exposure to various human herpesviruses (HHVs) including HHV-6, HCMV and EBV does not cause a life-threatening disease. In fact, most individuals are frequently unaware of their first exposure to such pathogens. These herpesviruses acquire lifelong latency in the human body where they show minimal genomic activity required for their survival. We hypothesized that it is not the latency itself but a timely, regionally restricted viral reactivation in a sub-set of host cells that plays a key role in disease development. HHV-6 (HHV-6A and HHV-6B) and HHV-7 are unique HHVs that acquire latency by integration of the viral genome into sub-telomeric region of human chromosomes. HHV-6 reactivation has been linked to Alzheimer's Disease, Chronic Fatigue Syndrome, and many other diseases. However, lack of viral activity in commonly tested biological materials including blood or serum strongly suggests tissue specific localization of active HHV-6 genome. Here in this paper, we attempted to analyze active HHV-6 transcripts in postmortem tissue biopsies from a small cohort of ME/CFS patients and matched controls by fluorescence in situ hybridization using a probe against HHV-6 microRNA (miRNA), miR-aU14. Our results show abundant viral miRNA in various regions of the human brain and associated neuronal tissues including the spinal cord that is only detected in ME/CFS patients and not in controls. Our findings provide evidence of tissue-specific active HHV-6 and EBV infection in ME/CFS, which along with recent work demonstrating a possible relationship between herpesvirus infection and ME/CFS, provide grounds for renewed discussion on the role of herpesviruses in ME/CFS.}, language = {en} } @unpublished{HennigPrustyKauferetal.2021, author = {Hennig, Thomas and Prusty, Archana B. and Kaufer, Benedikt and Whisnant, Adam W. and Lodha, Manivel and Enders, Antje and Thomas, Julius and Kasimir, Francesca and Grothey, Arnhild and Herb, Stefanie and J{\"u}rges, Christopher and Meister, Gunter and Erhard, Florian and D{\"o}lken, Lars and Prusty, Bhupesh K.}, title = {Selective inhibition of microRNA processing by a herpesvirus-encoded microRNA triggers virus reactivation from latency}, edition = {submitted version}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267858}, year = {2021}, abstract = {Herpesviruses have mastered host cell modulation and immune evasion to augment productive infection, life-long latency and reactivation thereof 1,2. A long appreciated, yet elusively defined relationship exists between the lytic-latent switch and viral non-coding RNAs 3,4. Here, we identify miRNA-mediated inhibition of miRNA processing as a novel cellular mechanism that human herpesvirus 6A (HHV-6A) exploits to disrupt mitochondrial architecture, evade intrinsic host defense and drive the latent-lytic switch. We demonstrate that virus-encoded miR-aU14 selectively inhibits the processing of multiple miR-30 family members by direct interaction with the respective pri-miRNA hairpin loops. Subsequent loss of miR-30 and activation of miR-30/p53/Drp1 axis triggers a profound disruption of mitochondrial architecture, which impairs induction of type I interferons and is necessary for both productive infection and virus reactivation. Ectopic expression of miR-aU14 was sufficient to trigger virus reactivation from latency thereby identifying it as a readily drugable master regulator of the herpesvirus latent-lytic switch. Our results show that miRNA-mediated inhibition of miRNA processing represents a generalized cellular mechanism that can be exploited to selectively target individual members of miRNA families. We anticipate that targeting miR-aU14 provides exciting therapeutic options for preventing herpesvirus reactivations in HHV-6-associated disorders like myalgic encephalitis/chronic fatigue syndrome (ME/CFS) and Long-COVID.}, language = {en} }