@phdthesis{Lorenzin2016, author = {Lorenzin, Francesca}, title = {Regulation of transcription by MYC - DNA binding and target genes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150766}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {MYC is a transcription factor, whose expression is elevated or deregulated in many human cancers (up to 70\%) and is often associated with aggressive and poorly differentiated tumors. Although MYC is extensively studied, discrepancies have emerged about how this transcription factor works. In primary lymphocytes, MYC promotes transcriptional amplification of virtually all genes with an open promoter, whereas in tumor cells MYC regulates specific sets of genes that have significant prognostic value. Furthermore, the set of target genes that distinguish MYC's physiological function from the pathological/oncogenic one, whether it exists or not, has not been fully understood yet. In this study, it could be shown that MYC protein levels within a cell and promoter affinity (determined by E-box presence or interaction with other proteins) of target genes toward MYC are important factors that influence MYC activity. At low levels, MYC can amplify a certain transcriptional program, which includes high affinity binding sites, whereas at high levels MYC leads to the specific up- and down regulation of genes with low affinity. Moreover, the promoter affinity characterizes different sets of target genes which can be distinguished in the physiological or oncogenic MYC signatures. MYC-mediated repression requires higher MYC levels than activation and formation of a complex with MIZ1 is necessary for inhibiting expression of a subset of MYC target genes.}, subject = {MYC}, language = {en} } @article{ElkonLoayzaPuchKorkmazetal.2015, author = {Elkon, Ran and Loayza-Puch, Fabricio and Korkmaz, Gozde and Lopes, Rui and van Breugel, Pieter C and Bleijerveld, Onno B and Altelaar, AF Maarten and Wolf, Elmar and Lorenzin, Francesca and Eilers, Martin and Agami, Reuven}, title = {Myc coordinates transcription and translation to enhance transformation and suppress invasiveness}, series = {EMBO reports}, volume = {16}, journal = {EMBO reports}, number = {12}, doi = {10.15252/embr.201540717}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150373}, pages = {1723-1736}, year = {2015}, abstract = {c-Myc is one of the major human proto-oncogenes and is often associated with tumor aggression and poor clinical outcome. Paradoxically, Myc was also reported as a suppressor of cell motility, invasiveness, and metastasis. Among the direct targets of Myc are many components of the protein synthesis machinery whose induction results in an overall increase in protein synthesis that empowers tumor cell growth. At present, it is largely unknown whether beyond the global enhancement of protein synthesis, Myc activation results in translation modulation of specific genes. Here, we measured Myc-induced global changes in gene expression at the transcription, translation, and protein levels and uncovered extensive transcript-specific regulation of protein translation. Particularly, we detected a broad coordination between regulation of transcription and translation upon modulation of Myc activity and showed the connection of these responses to mTOR signaling to enhance oncogenic transformation and to the TGFβ pathway to modulate cell migration and invasiveness. Our results elucidate novel facets of Myc-induced cellular responses and provide a more comprehensive view of the consequences of its activation in cancer cells.}, language = {en} } @article{LorenzinBenaryBaluapurietal.2016, author = {Lorenzin, Francesca and Benary, Uwe and Baluapuri, Apoorva and Walz, Susanne and Jung, Lisa Anna and von Eyss, Bj{\"o}rn and Kisker, Caroline and Wolf, Jana and Eilers, Martin and Wolf, Elmar}, title = {Different promoter affinities account for specificity in MYC-dependent gene regulation}, series = {eLife}, volume = {5}, journal = {eLife}, doi = {10.7554/eLife.15161}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162913}, pages = {e15161}, year = {2016}, abstract = {Enhanced expression of the MYC transcription factor is observed in the majority of tumors. Two seemingly conflicting models have been proposed for its function: one proposes that MYC enhances expression of all genes, while the other model suggests gene-specific regulation. Here, we have explored the hypothesis that specific gene expression profiles arise since promoters differ in affinity for MYC and high-affinity promoters are fully occupied by physiological levels of MYC. We determined cellular MYC levels and used RNA- and ChIP-sequencing to correlate promoter occupancy with gene expression at different concentrations of MYC. Mathematical modeling showed that binding affinities for interactions of MYC with DNA and with core promoter-bound factors, such as WDR5, are sufficient to explain promoter occupancies observed in vivo. Importantly, promoter affinity stratifies different biological processes that are regulated by MYC, explaining why tumor-specific MYC levels induce specific gene expression programs and alter defined biological properties of cells.}, language = {en} }