@article{SierraSanchezGutierrezetal.2019, author = {Sierra, Miguel A. and S{\´a}nchez, David and Gutierrez, Rafael and Cuniberti, Gianaurelio and Dom{\´i}nguez-Adame, Francisco and D{\´i}az, Elena}, title = {Spin-polarized electron transmission in DNA-like systems}, series = {Biomolecules}, volume = {10}, journal = {Biomolecules}, number = {1}, issn = {2218-273X}, doi = {10.3390/biom10010049}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193813}, year = {2019}, abstract = {The helical distribution of the electronic density in chiral molecules, such as DNA and bacteriorhodopsin, has been suggested to induce a spin-orbit coupling interaction that may lead to the so-called chirality-induced spin selectivity (CISS) effect. Key ingredients for the theoretical modelling are, in this context, the helically shaped potential of the molecule and, concomitantly, a Rashba-like spin-orbit coupling due to the appearance of a magnetic field in the electron reference frame. Symmetries of these models clearly play a crucial role in explaining the observed effect, but a thorough analysis has been largely ignored in the literature. In this work, we present a study of these symmetries and how they can be exploited to enhance chiral-induced spin selectivity in helical molecular systems.}, language = {en} }