@article{ChaudryGrimmFriedbergeretal.2020, author = {Chaudry, Oliver and Grimm, Alexandra and Friedberger, Andreas and Kemmler, Wolfgang and Uder, Michael and Jakob, Franz and Quick, Harald H. and von Stengel, Simon and Engelke, Klaus}, title = {Magnetic Resonance Imaging and Bioelectrical Impedance Analysis to Assess Visceral and Abdominal Adipose Tissue}, series = {Obesity}, volume = {28}, journal = {Obesity}, number = {2}, doi = {10.1002/oby.22712}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213591}, pages = {277 -- 283}, year = {2020}, abstract = {Objective This study aimed to compare a state-of-the-art bioelectrical impedance analysis (BIA) device with two-point Dixon magnetic resonance imaging (MRI) for the quantification of visceral adipose tissue (VAT) as a health-related risk factor. Methods A total of 63 male participants were measured using a 3-T MRI scanner and a segmental, multifrequency BIA device. MRI generated fat fraction (FF) maps, in which VAT volume, total abdominal adipose tissue volume, and FF of visceral and total abdominal compartments were quantified. BIA estimated body fat mass and VAT area. Results Coefficients of determination between abdominal (r\(^{2}\) = 0.75) and visceral compartments (r\(^{2}\) = 0.78) were similar for both groups, but slopes differed by a factor of two. The ratio of visceral to total abdominal FF was increased in older men compared with younger men. This difference was not detected with BIA. MRI and BIA measurements of the total abdominal volume correlated moderately (r\(^{2}\) = 0.31-0.56), and visceral measurements correlated poorly (r\(^{2}\) = 0.13-0.44). Conclusions Visceral BIA measurements agreed better with MRI measurements of the total abdomen than of the visceral compartment, indicating that BIA visceral fat area assessment cannot differentiate adipose tissue between visceral and abdominal compartments in young and older participants.}, language = {en} } @article{AltmannMutWolfetal.2021, author = {Altmann, Stephan and Mut, J{\"u}rgen and Wolf, Natalia and Meißner-Weigl, Jutta and Rudert, Maximilian and Jakob, Franz and Gutmann, Marcus and L{\"u}hmann, Tessa and Seibel, J{\"u}rgen and Ebert, Regina}, title = {Metabolic glycoengineering in hMSC-TERT as a model for skeletal precursors by using modified azide/alkyne monosaccharides}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {6}, issn = {1422-0067}, doi = {10.3390/ijms22062820}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259247}, year = {2021}, abstract = {Metabolic glycoengineering enables a directed modification of cell surfaces by introducing target molecules to surface proteins displaying new features. Biochemical pathways involving glycans differ in dependence on the cell type; therefore, this technique should be tailored for the best results. We characterized metabolic glycoengineering in telomerase-immortalized human mesenchymal stromal cells (hMSC-TERT) as a model for primary hMSC, to investigate its applicability in TERT-modified cell lines. The metabolic incorporation of N-azidoacetylmannosamine (Ac\(_4\)ManNAz) and N-alkyneacetylmannosamine (Ac\(_4\)ManNAl) into the glycocalyx as a first step in the glycoengineering process revealed no adverse effects on cell viability or gene expression, and the in vitro multipotency (osteogenic and adipogenic differentiation potential) was maintained under these adapted culture conditions. In the second step, glycoengineered cells were modified with fluorescent dyes using Cu-mediated click chemistry. In these analyses, the two mannose derivatives showed superior incorporation efficiencies compared to glucose and galactose isomers. In time-dependent experiments, the incorporation of Ac\(_4\)ManNAz was detectable for up to six days while Ac\(_4\)ManNAl-derived metabolites were absent after two days. Taken together, these findings demonstrate the successful metabolic glycoengineering of immortalized hMSC resulting in transient cell surface modifications, and thus present a useful model to address different scientific questions regarding glycosylation processes in skeletal precursors.}, language = {en} } @article{VogtGirschickSchweitzeretal.2020, author = {Vogt, Marius and Girschick, Hermann and Schweitzer, Tilmann and Benoit, Clemens and Holl-Wieden, Annette and Seefried, Lothar and Jakob, Franz and Hofmann, Christine}, title = {Pediatric hypophosphatasia: lessons learned from a retrospective single-center chart review of 50 children}, series = {Orphanet Journal of Rare Diseases}, volume = {15}, journal = {Orphanet Journal of Rare Diseases}, doi = {10.1186/s13023-020-01500-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230505}, year = {2020}, abstract = {Background Hypophosphatasia (HPP) is a rare, inherited metabolic disorder caused by loss-of-function mutations in the ALPL gene that encodes the tissue-nonspecific alkaline phosphatase TNAP (ORPHA 436). Its clinical presentation is highly heterogeneous with a remarkably wide-ranging severity. HPP affects patients of all ages. In children HPP-related musculoskeletal symptoms may mimic rheumatologic conditions and diagnosis is often difficult and delayed. To improve the understanding of HPP in children and in order to shorten the diagnostic time span in the future we studied the natural history of the disease in our large cohort of pediatric patients. This single centre retrospective chart review included longitudinal data from 50 patients with HPP diagnosed and followed at the University Children's Hospital Wuerzburg, Germany over the last 25 years. Results The cohort comprises 4 (8\%) perinatal, 17 (34\%) infantile and 29 (58\%) childhood onset HPP patients. Two patients were deceased at the time of data collection. Diagnosis was based on available characteristic clinical symptoms (in 88\%), low alkaline phosphatase (AP) activity (in 96\%), accumulating substrates of AP (in 58\%) and X-ray findings (in 48\%). Genetic analysis was performed in 48 patients (31 compound heterozygous, 15 heterozygous, 2 homozygous mutations per patient), allowing investigations on genotype-phenotype correlations. Based on anamnestic data, median age at first clinical symptoms was 3.5 months (min. 0, max. 107), while median time to diagnosis was 13 months (min. 0, max. 103). Common symptoms included: impairment of motor skills (78\%), impairment of mineralization (72\%), premature loss of teeth (64\%), musculoskeletal pain and craniosynostosis (each 64\%) and failure to thrive (62\%). Up to now 20 patients started medical treatment with Asfotase alfa. Conclusions Reported findings support the clinical perception of HPP being a chronic multi-systemic disease with often delayed diagnosis. Our natural history information provides detailed insights into the prevalence of different symptoms, which can help to improve and shorten diagnostics and thereby lead to an optimised medical care, especially with promising therapeutic options such as enzyme-replacement-therapy with Asfotase alfa in mind.}, language = {en} } @article{KemmlerKohlJakobetal.2020, author = {Kemmler, Wolfgang and Kohl, Matthias and Jakob, Franz and Engelke, Klaus and Stengel, Simon von}, title = {Effects of high intensity dynamic resistance exercise and whey protein supplements on osteosarcopenia in older men with low bone and muscle mass. Final results of the randomized controlled FrOST study}, series = {Nutrients}, volume = {12}, journal = {Nutrients}, number = {8}, issn = {2072-6643}, doi = {10.3390/nu12082341}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211108}, year = {2020}, abstract = {The present study aimed to evaluate the effect of high intensity dynamic resistance exercise (HIT-DRT) and whey protein supplementation (WPS) on bone mineral density (BMD) and sarcopenia parameters in osteosarcopenic men. Men ≥ 72 years with osteosarcopenia (n = 43) were randomly assigned to a HIT-RT (HIT-RT: n = 21) or a non-training control group (n = 22). Supervised HIT-RT twice/week was applied for 18 months, while the control group maintained their habitual lifestyle. Supplying WPS, total protein intake amounted to 1.5-1.6 (HIT-RT) and 1.2 g/kg/body mass/d (control). Both groups were supplied with calcium and vitamin D. Primary study outcomes were BMD and the sarcopenia Z-score. After adjusting for multiplicity, we observed significant positive effects for sarcopenia Z-score (standardized mean difference (SMD): 1.40), BMD at lumbar spine (SMD: 0.72) and total hip (SMD: 0.72). In detail, effect sizes for skeletal muscle mass changes were very pronounced (1.97, p < 0.001), while effects for functional sarcopenia parameters were moderate (0.87, p = 0.008; handgrip strength) or low (0.39, p = 0.209; gait velocity). Apart from one man who reported short periods of temporary worsening of existing joint pain, no HIT-RT/WPS-related adverse effects or injuries were reported. We consider HIT-RT supported by whey protein supplementation as a feasible, attractive, safe and highly effective option to fight osteosarcopenia in older men.}, language = {en} } @article{HerrmannEngelkeEbertetal.2020, author = {Herrmann, Marietta and Engelke, Klaus and Ebert, Regina and M{\"u}ller-Deubert, Sigrid and Rudert, Maximilian and Ziouti, Fani and Jundt, Franziska and Felsenberg, Dieter and Jakob, Franz}, title = {Interactions between muscle and bone — Where physics meets biology}, series = {Biomolecules}, volume = {10}, journal = {Biomolecules}, number = {3}, issn = {2218-273X}, doi = {10.3390/biom10030432}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203399}, year = {2020}, abstract = {Muscle and bone interact via physical forces and secreted osteokines and myokines. Physical forces are generated through gravity, locomotion, exercise, and external devices. Cells sense mechanical strain via adhesion molecules and translate it into biochemical responses, modulating the basic mechanisms of cellular biology such as lineage commitment, tissue formation, and maturation. This may result in the initiation of bone formation, muscle hypertrophy, and the enhanced production of extracellular matrix constituents, adhesion molecules, and cytoskeletal elements. Bone and muscle mass, resistance to strain, and the stiffness of matrix, cells, and tissues are enhanced, influencing fracture resistance and muscle power. This propagates a dynamic and continuous reciprocity of physicochemical interaction. Secreted growth and differentiation factors are important effectors of mutual interaction. The acute effects of exercise induce the secretion of exosomes with cargo molecules that are capable of mediating the endocrine effects between muscle, bone, and the organism. Long-term changes induce adaptations of the respective tissue secretome that maintain adequate homeostatic conditions. Lessons from unloading, microgravity, and disuse teach us that gratuitous tissue is removed or reorganized while immobility and inflammation trigger muscle and bone marrow fatty infiltration and propagate degenerative diseases such as sarcopenia and osteoporosis. Ongoing research will certainly find new therapeutic targets for prevention and treatment.}, language = {en} } @article{LiedtkeHofmannJakobetal.2020, author = {Liedtke, Daniel and Hofmann, Christine and Jakob, Franz and Klopocki, Eva and Graser, Stephanie}, title = {Tissue-Nonspecific Alkaline Phosphatase—A Gatekeeper of Physiological Conditions in Health and a Modulator of Biological Environments in Disease}, series = {Biomolecules}, volume = {10}, journal = {Biomolecules}, number = {12}, publisher = {MDPI}, issn = {2218-273X}, doi = {10.3390/biom10121648}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220096}, year = {2020}, abstract = {Tissue-nonspecific alkaline phosphatase (TNAP) is a ubiquitously expressed enzyme that is best known for its role during mineralization processes in bones and skeleton. The enzyme metabolizes phosphate compounds like inorganic pyrophosphate and pyridoxal-5′-phosphate to provide, among others, inorganic phosphate for the mineralization and transportable vitamin B6 molecules. Patients with inherited loss of function mutations in the ALPL gene and consequently altered TNAP activity are suffering from the rare metabolic disease hypophosphatasia (HPP). This systemic disease is mainly characterized by impaired bone and dental mineralization but may also be accompanied by neurological symptoms, like anxiety disorders, seizures, and depression. HPP characteristically affects all ages and shows a wide range of clinical symptoms and disease severity, which results in the classification into different clinical subtypes. This review describes the molecular function of TNAP during the mineralization of bones and teeth, further discusses the current knowledge on the enzyme's role in the nervous system and in sensory perception. An additional focus is set on the molecular role of TNAP in health and on functional observations reported in common laboratory vertebrate disease models, like rodents and zebrafish.}, language = {en} } @article{SchmalzlPlumhoffGilbertetal.2019, author = {Schmalzl, Jonas and Plumhoff, Piet and Gilbert, Fabian and Gohlke, Frank and Konrads, Christian and Brunner, Ulrich and Jakob, Franz and Ebert, Regina and Steinert, Andre F.}, title = {Tendon-derived stem cells from the long head of the biceps tendon}, series = {Bone \& Joint Research}, volume = {8}, journal = {Bone \& Joint Research}, number = {9}, doi = {10.1302/2046-3758.89.BJR-2018-0214.R2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200370}, pages = {414-424}, year = {2019}, abstract = {Objectives The long head of the biceps (LHB) is often resected in shoulder surgery and could therefore serve as a cell source for tissue engineering approaches in the shoulder. However, whether it represents a suitable cell source for regenerative approaches, both in the inflamed and non-inflamed states, remains unclear. In the present study, inflamed and native human LHBs were comparatively characterized for features of regeneration. Methods In total, 22 resected LHB tendons were classified into inflamed samples (n = 11) and non-inflamed samples (n = 11). Proliferation potential and specific marker gene expression of primary LHB-derived cell cultures were analyzed. Multipotentiality, including osteogenic, adipogenic, chondrogenic, and tenogenic differentiation potential of both groups were compared under respective lineage-specific culture conditions. Results Inflammation does not seem to affect the proliferation rate of the isolated tendon-derived stem cells (TDSCs) and the tenogenic marker gene expression. Cells from both groups showed an equivalent osteogenic, adipogenic, chondrogenic and tenogenic differentiation potential in histology and real-time polymerase chain reaction (RT-PCR) analysis. Conclusion These results suggest that the LHB tendon might be a suitable cell source for regenerative approaches, both in inflamed and non-inflamed states. The LHB with and without tendinitis has been characterized as a novel source of TDSCs, which might facilitate treatment of degeneration and induction of regeneration in shoulder surgery.}, language = {en} } @article{SeefriedGenestBaumannetal.2022, author = {Seefried, Lothar and Genest, Franca and Baumann, Jasmin and Heidemeier, Anke and Meffert, Rainer and Jakob, Franz}, title = {Efficacy of Zoledronic Acid in the Treatment of Nonmalignant Painful Bone Marrow Lesions: A Triple-Blind, Randomized, Placebo-Controlled Phase III Clinical Trial (ZoMARS)}, series = {Journal of Bone and Mineral Research}, volume = {37}, journal = {Journal of Bone and Mineral Research}, number = {3}, doi = {10.1002/jbmr.4493}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276368}, pages = {420 -- 427}, year = {2022}, abstract = {Bone marrow lesions (BML) represent areas of deteriorated bone structure and metabolism characterized by pronounced water-equivalent signaling within the trabecular bone on magnetic resonance imaging (MRI). BML are associated with repair mechanisms subsequent to various clinical conditions associated with inflammatory and non-inflammatory injury to the bone. There is no approved treatment for this condition. Bisphosphonates are known to improve bone stability in osteoporosis and other bone disorders and have been used off-label to treat BML. A randomized, triple-blind, placebo-controlled phase III trial was conducted to assess efficacy and safety of single-dose zoledronic acid (ZOL) 5 mg iv with vitamin D 1000 IU/d as opposed to placebo with vitamin D 1000 IU/d in 48 patients (randomized 2:1) with BML. Primary efficacy endpoint was reduction of edema volume 6 weeks after treatment as assessed by MRI. After treatment, mean BML volume decreased by 64.53\% (±41.92\%) in patients receiving zoledronic acid and increased by 14.43\% (±150.46\%) in the placebo group (p = 0.007). A decrease in BML volume was observed in 76.5\% of patients receiving ZOL and in 50\% of the patients receiving placebo. Pain level (visual analogue scale [VAS]) and all categories of the pain disability index (PDI) improved with ZOL versus placebo after 6 weeks but reconciled after 6 additional weeks of follow-up. Six serious adverse events occurred in 5 patients, none of which were classified as related to the study drug. No cases of osteonecrosis or fractures occurred. Therefore, single-dose zoledronic acid 5 mg iv together with vitamin D may enhance resolution of bone marrow lesions over 6 weeks along with reduction of pain compared with vitamin D supplementation only.}, language = {en} } @article{KemmlerKohlFroehlichetal.2020, author = {Kemmler, Wolfgang and Kohl, Matthias and Fr{\"o}hlich, Michael and Jakob, Franz and Engelke, Klaus and von Stengel, Simon and Schoene, Daniel}, title = {Effects of High-Intensity Resistance Training on Osteopenia and Sarcopenia Parameters in Older Men with Osteosarcopenia—One-Year Results of the Randomized Controlled Franconian Osteopenia and Sarcopenia Trial (FrOST)}, series = {Journal of Bone and Mineral Research}, volume = {35}, journal = {Journal of Bone and Mineral Research}, number = {9}, doi = {10.1002/jbmr.4027}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214609}, pages = {1634 -- 1644}, year = {2020}, abstract = {Dynamic resistance exercise (DRT) might be the most promising agent for fighting sarcopenia in older people. However, the positive effect of DRT on osteopenia/osteoporosis in men has still to be confirmed. To evaluate the effect of low-volume/high-intensity (HIT)-DRT on bone mineral density (BMD) and skeletal muscle mass index (SMI) in men with osteosarcopenia, we initiated the Franconian Osteopenia and Sarcopenia Trial (FrOST). Forty-three sedentary community-dwelling older men (aged 73 to 91 years) with osteopenia/osteoporosis and SMI-based sarcopenia were randomly assigned to a HIT-RT exercise group (EG; n = 21) or a control group (CG; n = 22). HIT-RT provided a progressive, periodized single-set DRT on machines with high intensity, effort, and velocity twice a week, while CG maintained their lifestyle. Both groups were adequately supplemented with whey protein, vitamin D, and calcium. Primary study endpoint was integral lumbar spine (LS) BMD as determined by quantitative computed tomography. Core secondary study endpoint was SMI as determined by dual-energy X-ray absorptiometry. Additional study endpoints were BMD at the total hip and maximum isokinetic hip-/leg-extensor strength (leg press). After 12 months of exercise, LS-BMD was maintained in the EG and decreased significantly in the CG, resulting in significant between-group differences (p < 0.001; standardized mean difference [SMD] = 0.90). In parallel, SMI increased significantly in the EG and decreased significantly in the CG (p < 0.001; SMD = 1.95). Total hip BMD changes did not differ significantly between the groups (p = 0.064; SMD = 0.65), whereas changes in maximum hip-/leg-extensor strength were much more prominent (p < 0.001; SMD = 1.92) in the EG. Considering dropout (n = 2), attendance rate (95\%), and unintended side effects/injuries (n = 0), we believe our HIT-RT protocol to be feasible, attractive, and safe. In summary, we conclude that our combined low-threshold HIT-RT/protein/vitamin D/calcium intervention was feasible, safe, and effective for tackling sarcopenia and osteopenia/osteoporosis in older men with osteosarcopenia.}, language = {en} } @article{TylekSchillingSchlegelmilchetal.2019, author = {Tylek, Tina and Schilling, Tatjana and Schlegelmilch, Katrin and Ries, Maximilian and Rudert, Maximilian and Jakob, Franz and Groll, J{\"u}rgen}, title = {Platelet lysate outperforms FCS and human serum for co-culture of primary human macrophages and hMSCs}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-40190-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229174}, year = {2019}, abstract = {In vitro co-cultures of different primary human cell types are pivotal for the testing and evaluation of biomaterials under conditions that are closer to the human in vivo situation. Especially co-cultures of macrophages and mesenchymal stem cells (MSCs) are of interest, as they are both present and involved in tissue regeneration and inflammatory reactions and play crucial roles in the immediate inflammatory reactions and the onset of regenerative processes, thus reflecting the decisive early phase of biomaterial contact with the host. A co-culture system of these cell types might thus allow for the assessment of the biocompatibility of biomaterials. The establishment of such a co-culture is challenging due to the different in vitro cell culture conditions. For human macrophages, medium is usually supplemented with human serum (hS), whereas hMSC culture is mostly performed using fetal calf serum (FCS), and these conditions are disadvantageous for the respective other cell type. We demonstrate that human platelet lysate (hPL) can replace hS in macrophage cultivation and appears to be the best option for co-cultivation of human macrophages with hMSCs. In contrast to FCS and hS, hPL maintained the phenotype of both cell types, comparable to that of their respective standard culture serum, as well as the percentage of each cell population. Moreover, the expression profile and phagocytosis activity of macrophages was similar to hS.}, language = {en} }