@article{SchneiderSchauliesKrethHofmannetal.1991, author = {Schneider-Schaulies, Sibylle and Kreth, H. W. and Hofmann, G. and Billeter, M. A. and ter Meulen, V.}, title = {Expression of measles virus RNA in peripheral blood mononuclear cells of patients with measles, SSPE, and autoimmune diseases}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62297}, year = {1991}, abstract = {No abstract available}, subject = {Virologie}, language = {en} } @article{FreyErtlAngermannetal.2013, author = {Frey, A. and Ertl, G. and Angermann, C. E. and Hofmann, U. and St{\"o}rk, S. and Frantz, S.}, title = {Complement C3c as a Biomarker in Heart Failure}, series = {Mediators of Inflammation}, volume = {2013}, journal = {Mediators of Inflammation}, number = {Article ID 716902}, doi = {10.1155/2013/716902}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129668}, pages = {7}, year = {2013}, abstract = {Experimental data indicates an important role of the innate immune system in cardiac remodeling and heart failure (HF). Complement is a central effector pathway of the innate immune system. Animals lacking parts of the complement system are protected from adverse remodeling. Based on these data, we hypothesized that peripheral complement levels could be a good marker for adverse remodeling and prognosis in patients with HF. Methods and Results. Since complement activation converges on the complement factor C3, we measured serum C3c, a stable C3-conversion product, in 197 patients with stable systolic HF. Subgroups with normal and elevated C3c levels were compared. C3c levels were elevated in 17\%of the cohort. Patients with elevated C3c levels exhibited a trend to better survival, slightly higher LVEF, and lower NTpro-BNP values in comparison to patients with normal C3c values. No differences were found regarding NYHA functional class. Significantly more patients with elevated C3c had preexisting diabetes. The prevalence of CAD, arterial hypertension, and atrial fibrillation was not increased in patients with elevated C3c. Conclusion. Elevated C3c levels are associated with less adverse remodeling and improved survival in patients with stable systolic heart failure.}, language = {en} } @article{BittnerBobakHofmannetal.2015, author = {Bittner, Stefan and Bobak, Nicole and Hofmann, Majella-Sophie and Schuhmann, Michael K. and Ruck, Tobias and G{\"o}bel, Kerstin and Br{\"u}ck, Wolfgang and Wiendl, Heinz and Meuth, Sven G.}, title = {Murine K\(_{2P}\)5.1 Deficiency Has No Impact on Autoimmune Neuroinflammation due to Compensatory K\(_{2P}\)3.1-and K\(_{V}\)1.3-Dependent Mechanisms}, series = {International Journal of Molecular Sciences}, volume = {16}, journal = {International Journal of Molecular Sciences}, doi = {10.3390/ijms160816880}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151454}, pages = {16880 -- 16896}, year = {2015}, abstract = {Lymphocytes express potassium channels that regulate physiological cell functions, such as activation, proliferation and migration. Expression levels of K\(_{2P}\)5.1(TASK2; KCNK5) channels belonging to the family of two-pore domain potassium channels have previously been correlated to the activity of autoreactive T lymphocytes in patients with multiple sclerosis and rheumatoid arthritis. In humans, K\(_{2P}\)5.1 channels are upregulated upon T cell stimulation and influence T cell effector functions. However, a further clinical translation of targeting K\(_{2P}\)5.1 is currently hampered by a lack of highly selective inhibitors, making it necessary to evaluate the impact of KCNK5 in established preclinical animal disease models. We here demonstrate that K\(_{2P}\)5.1 knockout (K\(_{2P}\)5.1\(^{-/-}\) mice display no significant alterations concerning T cell cytokine production, proliferation rates, surface marker molecules or signaling pathways. In an experimental model of autoimmune neuroinflammation, K\(_{2P}\)5.1\(^{-/-}\) mice show a comparable disease course to wild-type animals and no major changes in the peripheral immune system or CNS compartment. A compensatory upregulation of the potassium channels K\(_{2P}\)3.1 and K\(_{V}\)1.3 seems to counterbalance the deletion of K\(_{2P}\)5.1. As an alternative model mimicking autoimmune neuroinflammation, experimental autoimmune encephalomyelitis in the common marmoset has been proposed, especially for testing the efficacy of new potential drugs. Initial experiments show that K\(_{2P}\)5.1 is functionally expressed on marmoset T lymphocytes, opening up the possibility for assessing future K\(_{2P}\)5.1-targeting drugs.}, language = {en} }