@article{HeinsenStrikLutheretal.1994, author = {Heinsen, Helmut and Strik, M. and Luther, K. and Ulmar, G. and Gangnus, D. and Jungkunz, G. and Eisenmenger, W. and G{\"o}tz, M. and Bauer, M.}, title = {Cortical and striatal neurone number in Huntington's disease}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55217}, year = {1994}, abstract = {The total cortical and striatal neurone and glial numbers were estimated in five cases of Huntington's disease (three males, two females) and five ageand sex-matched control cases. Serial 500-l-lm-thick gallocyanin-stained frontal sections through the left hemisphere were analysed using Cavalieri's principle for volume and the optical disector for cell density estimations. The average cortical neurone number of five controls (mean age 53±13 years, range 36-72 years) was 5.97x 109±320x 106 , the average number of small striatal neurones was 82 X 106± 15.8 X 106• The left striatum (caudatum, putamen, and accumbens) contained a mean of 273 X 106±53 X 106 glial cells (oligodendrocytes, astrocytes and unc1assifiable glial profiles). The mean cortical neurone number in Huntington's disease patients (mean age 49±14 years, range 36-75 years) was diminished by about 33 \% to 3.99x109±218x106 nerve cells (P ::;:::: 0.012, MannWhitney V-test). The mean number of small striatal neurones decreased tremendously to 9.72 X 106 ± 3.64 X 106 (-88 \% ). The decrease in total glial cells was less pronounced (193 X 106±26 X 106) but the mean glial index, the numerical ratio of glial cells per neurone, increased from 3.35 to 22.59 in Huntington's disease. Qualitatively, neuronal loss was most pronounced in supragranular layers of primary sensory areas (Brodmann's areae 3,1,2; area 17, area 41). Layer HIc pyramidal cells were preferentially lost in association areas of the temporal, frontal, and parietal lobes, whereas spared layer IV granule cells formed a conspicuous band between layer IH and V in these fields. Methodological issues are discussed in context with previous investigations and similarities and differences of laminar and lobar nerve cellloss in Huntington's disease are compared with nerve cell degent-ration in other neuropsychiatric diseases.}, subject = {Medizin}, language = {en} } @article{ScharmannThornhamGrafeetal.2013, author = {Scharmann, Mathias and Thornham, Daniel G. and Grafe, T. Ulmar and Federle, Walter}, title = {A Novel Type of Nutritional Ant-Plant Interaction: Ant Partners of Carnivorous Pitcher Plants Prevent Nutrient Export by Dipteran Pitcher Infauna}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0063556}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130952}, pages = {e63556}, year = {2013}, abstract = {Many plants combat herbivore and pathogen attack indirectly by attracting predators of their herbivores. Here we describe a novel type of insect-plant interaction where a carnivorous plant uses such an indirect defence to prevent nutrient loss to kleptoparasites. The ant Camponotus schmitzi is an obligate inhabitant of the carnivorous pitcher plant Nepenthes bicalcarata in Borneo. It has recently been suggested that this ant-plant interaction is a nutritional mutualism, but the detailed mechanisms and the origin of the ant-derived nutrient supply have remained unexplained. We confirm that N. bicalcarata host plant leaves naturally have an elevated \(^{15}N/^{14}N\) stable isotope abundance ratio (\(\delta ^{15}N\)) when colonised by C. schmitzi. This indicates that a higher proportion of the plants' nitrogen is insect-derived when C. schmitzi ants are present (ca. 100\%, vs. 77\% in uncolonised plants) and that more nitrogen is available to them. We demonstrated direct flux of nutrients from the ants to the host plant in a \(^{15}N\) pulse-chase experiment. As C. schmitzi ants only feed on nectar and pitcher contents of their host, the elevated foliar \(\delta ^{15}N\) cannot be explained by classic ant-feeding (myrmecotrophy) but must originate from a higher efficiency of the pitcher traps. We discovered that C. schmitzi ants not only increase the pitchers' capture efficiency by keeping the pitchers' trapping surfaces clean, but they also reduce nutrient loss from the pitchers by predating dipteran pitcher inhabitants (infauna). Consequently, nutrients the pitchers would have otherwise lost via emerging flies become available as ant colony waste. The plants' prey is therefore conserved by the ants. The interaction between C. schmitzi, N. bicalcarata and dipteran pitcher infauna represents a new type of mutualism where animals mitigate the damage by nutrient thieves to a plant.}, language = {en} }