@misc{GesslerBruns1993, author = {Gessler, Manfred and Bruns, Gail A.}, title = {Sequence of the WT1 upstream region including the Wit-1 gene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30193}, year = {1993}, abstract = {No abstract available}, language = {en} } @article{HenryHooversBarichardetal.1993, author = {Henry, Isabelle and Hoovers, Jan and Barichard, Fernande and Berth{\´e}as, Marie-Francoise and Puech, Anne and Prieur, Fabienne and Gessler, Manfred and Bruns, Gail and Mannens, Marcel and Junien, Claudine}, title = {Pericentric intrachromosomal insertion responsible for recurrence of del(11)(p13p14) in a family}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59157}, year = {1993}, abstract = {The combined use of qualitative and quantitative analysis of I I p I 3 polymorphic markers tagether with chromosomal in situ suppression hybridization (CISS) with biotin labeled probes mapping to I I p allowed us to characterize a complex rearrangement segregating in a family. We detected a pericentric intrachromosomal insertion responsible (or recurrence of del( I I )(p 13p 14) in the family: an insertion of band I I p 13-p 14 carrying the genes for predisposition to Wilms' tumor, WT I, and for aniridia, AN2, into the long arm of chromosome I I in II q 13-q 1<4. Asymptomatic balanced carriers were observed over three generations. Classical cytogenetics had failed to detect this anomaly in the balanced carriers, who were first considered to be somatic mosaics for del( II )(p 13). Two of these women gave birth to children carrying a deleted chromosome II. most likely resulting from the loss of the I I p 13 band inserted in I I q. Although in both cases the deletion encompassed exactly the same maternally inherited markers, there was a wide Variation in clinical expression. One child, with the karyotype 46,XY,del(ll)(pllpl4), presented the full-blown WAGR syndrome with anlridia, mental retardation, Wilms' tumor, and pseudohermaphroditism, but also had proteinuria and glomerular sclerosis reminiscent of Drash syndrome. In contrast, the other one, a girl with the karyotype 46,XX,del( I I )(p I 3), only had aniridia. Although a specific set of mutational sites has been observed in Drash patients, these findings suggest that the loss of one copy of the WTI gene can result in similar genital and kidney abnormalities.}, subject = {Biochemie}, language = {en} } @article{GesslerBruns1988, author = {Gessler, Manfred and Bruns, Gail A. P.}, title = {Molecular mapping and cloning of the breakpoints of a chromosome 11p14.1-p13 deletion associated with the AGR syndrome}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59264}, year = {1988}, abstract = {Chromosome 11p13 is frequently rearranged in individuals with the WAGR syndrome (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) or parts of this syndrome. To map the cytogenetic aberrations molecularly, we screened DNA from cell Unes with known WAGR-related chromosome abnormalities for rearrangements with pulsed fleld gel (PFG) analysis using probes deleted from one chromosome 11 homolog of a WAGR patient. The first alteration was detected in a cell line from an individual with aniridia, genitourinary anomalies, mental retardation, and a deletion described as 11p14.1-p13. We have located one breakpoint close to probe HU11-164B and we have cloned both breakpoint sites as well as the junctional fragment. The breakpoints subdivide current intervals on the genetic map, and the probes for both sides will serve as important additional markers for a long-range restriction map of this region. Further characterization and sequencing of the breakpoints may yield insight into the mechanisms by which these deletions occur.}, subject = {Biochemie}, language = {en} } @article{GesslerKonigMooreetal.1993, author = {Gessler, Manfred and Konig, Anja and Moore, Jay and Qualman, Steven and Arden, Karen and Cavenee, Webster and Bruns, Gail}, title = {Homozygous inactivation of WTI in a Wilms' tumor associated with the WAGR syndrome}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59146}, year = {1993}, abstract = {Wilms' tumor is a childhood nephroblastoma that is postulated to arise through the inactivation of a tumor suppressor gene by a two-hit mechanism. A candidate II p 13 Wilms' tumor gene, WTI, has been cloned and shown to encode a zinc finger protein. Patients with the WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation) have a high risk of developing Wilms' tumor and they carry constitutional deletions of one chromosome II allele encompassing the WTI gene. Analysis of the remaining WTI allele in a Wilms' tumor from a WAGR patient revealed the deletion of a single nucleotide in exon 7. This mutation likely played a key role in tumor formation, as it prevents translation of the DNA-binding zinc finger domain that is essential for the function of the WTI polypeptide as a transcriptional regulator.}, subject = {Biochemie}, language = {en} } @article{GesslerPoustkaCaveneeetal.1990, author = {Gessler, Manfred and Poustka, Annemarie and Cavenee, Webster and Neve, Rachael L. and Orkin, Stuart H. and Bruns, Gail A.}, title = {Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30122}, year = {1990}, abstract = {No abstract available}, language = {en} } @techreport{GesslerSimolaBruns1989, author = {Gessler, Manfred and Simola, Kalle O. and Bruns, Gail A. P.}, title = {Cloning of breakpoints of a chromosome translocation identifies the AN2 locus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30177}, year = {1989}, abstract = {Chromosome translocations involving llpl3 have been associated with familial aniridia in two kindreds highlighting the chromosomal localization of the AN2 locus. This locus is also part of the WAGR complex (Wilros tumor, aniridia, genitourinary abnormalities, and mental retardation). In one kindred, the translocation is associated with a deletion, and probes for this region were used to identify and clone the breakpoints of the translocation in the second kindred. Comparison of phage restriction maps exclude the presence of any sizable deletion in this case. Sequences at the chromosome 11 breakpoint are conserved in multiple species, suggesting that the translocation falls within the AN2 gene.}, language = {en} } @article{SchwartzNeveEisenmanetal.1994, author = {Schwartz, Faina and Neve, Rachel and Eisenman, Robert and Gessler, Manfred and Bruns, Gail}, title = {A WAGR region gene between PAX-6 and FSHB expressed in fetal brain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59125}, year = {1994}, abstract = {Developmental delay or mental retardation is a frequent component of multi-system anomaly syndromes associated with chromosomal deletions. Isolation of genes involved in the mental dysfunction in these disorders should define loci important in brain formation or function. We have identified a highly conserved locus in the distal part of 11 p 13 that is prominently expressed in fetal brain. Minimal expression is observed in a number of other fetal tissues. The gene maps distal to PAX-6 but proximal to the loci for brain-derived neurotrophic factor (BDNF) and the beta subunit of follicle stimulating hormone (FSHB), within a region previously implicated in the mental retardation component of some WAGR syndrome patients. Within fetal brain, the corresponding transcript is prominent in frontal, motor and primary visual cortex as weil as in the caudate-putamen. The characteristics of this gene, including the striking evolutionary conservation at the locus, suggest that the encoded protein may function in brain development.}, subject = {Biochemie}, language = {en} }