@article{PostemaHoogmanAmbrosinoetal.2021, author = {Postema, Merel C. and Hoogman, Martine and Ambrosino, Sara and Asherson, Philip and Banaschewski, Tobias and Bandeira, Cibele E. and Baranov, Alexandr and Bau, Claiton H.D. and Baumeister, Sarah and Baur-Streubel, Ramona and Bellgrove, Mark A. and Biederman, Joseph and Bralten, Janita and Brandeis, Daniel and Brem, Silvia and Buitelaar, Jan K. and Busatto, Geraldo F. and Castellanos, Francisco X. and Cercignani, Mara and Chaim-Avancini, Tiffany M. and Chantiluke, Kaylita C. and Christakou, Anastasia and Coghill, David and Conzelmann, Annette and Cubillo, Ana I. and Cupertino, Renata B. and de Zeeuw, Patrick and Doyle, Alysa E. and Durston, Sarah and Earl, Eric A. and Epstein, Jeffery N. and Ethofer, Thomas and Fair, Damien A. and Fallgatter, Andreas J. and Faraone, Stephen V. and Frodl, Thomas and Gabel, Matt C. and Gogberashvili, Tinatin and Grevet, Eugenio H. and Haavik, Jan and Harrison, Neil A. and Hartman, Catharina A. and Heslenfeld, Dirk J. and Hoekstra, Pieter J. and Hohmann, Sarah and H{\o}vik, Marie F. and Jernigan, Terry L. and Kardatzki, Bernd and Karkashadze, Georgii and Kelly, Clare and Kohls, Gregor and Konrad, Kerstin and Kuntsi, Jonna and Lazaro, Luisa and Lera-Miguel, Sara and Lesch, Klaus-Peter and Louza, Mario R. and Lundervold, Astri J. and Malpas, Charles B and Mattos, Paulo and McCarthy, Hazel and Namazova-Baranova, Leyla and Nicolau, Rosa and Nigg, Joel T. and Novotny, Stephanie E. and Oberwelland Weiss, Eileen and O'Gorman Tuura, Ruth L. and Oosterlaan, Jaap and Oranje, Bob and Paloyelis, Yannis and Pauli, Paul and Picon, Felipe A. and Plessen, Kerstin J. and Ramos-Quiroga, J. Antoni and Reif, Andreas and Reneman, Liesbeth and Rosa, Pedro G.P. and Rubia, Katya and Schrantee, Anouk and Schweren, Lizanne J.S. and Seitz, Jochen and Shaw, Philip and Silk, Tim J. and Skokauskas, Norbert and Soliva Vila, Juan C. and Stevens, Michael C. and Sudre, Gustavo and Tamm, Leanne and Tovar-Moll, Fernanda and van Erp, Theo G.M. and Vance, Alasdair and Vilarroya, Oscar and Vives-Gilabert, Yolanda and von Polier, Georg G. and Walitza, Susanne and Yoncheva, Yuliya N. and Zanetti, Marcus V. and Ziegler, Georg C. and Glahn, David C. and Jahanshad, Neda and Medland, Sarah E. and Thompson, Paul M. and Fisher, Simon E. and Franke, Barbara and Francks, Clyde}, title = {Analysis of structural brain asymmetries in attention-deficit/hyperactivity disorder in 39 datasets}, series = {Journal of Child Psychology and Psychiatry}, volume = {62}, journal = {Journal of Child Psychology and Psychiatry}, number = {10}, doi = {10.1111/jcpp.13396}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239968}, pages = {1202 -- 1219}, year = {2021}, abstract = {Objective Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. Methods We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. Results There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen's d from -0.18 to 0.18) and would not survive study-wide correction for multiple testing. Conclusion Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait.}, language = {en} } @article{JanschZieglerForeroetal.2021, author = {Jansch, Charline and Ziegler, Georg C. and Forero, Andrea and Gredy, Sina and W{\"a}ldchen, Sina and Vitale, Maria Rosaria and Svirin, Evgeniy and Z{\"o}ller, Johanna E. M. and Waider, Jonas and G{\"u}nther, Katharina and Edenhofer, Frank and Sauer, Markus and Wischmeyer, Erhard and Lesch, Klaus-Peter}, title = {Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly}, series = {Journal of Neural Transmission}, volume = {128}, journal = {Journal of Neural Transmission}, number = {2}, issn = {1435-1463}, doi = {10.1007/s00702-021-02303-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268519}, pages = {225-241}, year = {2021}, abstract = {Human induced pluripotent stem cells (hiPSCs) have revolutionized the generation of experimental disease models, but the development of protocols for the differentiation of functionally active neuronal subtypes with defined specification is still in its infancy. While dysfunction of the brain serotonin (5-HT) system has been implicated in the etiology of various neuropsychiatric disorders, investigation of functional human 5-HT specific neurons in vitro has been restricted by technical limitations. We describe an efficient generation of functionally active neurons from hiPSCs displaying 5-HT specification by modification of a previously reported protocol. Furthermore, 5-HT specific neurons were characterized using high-end fluorescence imaging including super-resolution microscopy in combination with electrophysiological techniques. Differentiated hiPSCs synthesize 5-HT, express specific markers, such as tryptophan hydroxylase 2 and 5-HT transporter, and exhibit an electrophysiological signature characteristic of serotonergic neurons, with spontaneous rhythmic activities, broad action potentials and large afterhyperpolarization potentials. 5-HT specific neurons form synapses reflected by the expression of pre- and postsynaptic proteins, such as Bassoon and Homer. The distribution pattern of Bassoon, a marker of the active zone along the soma and extensions of neurons, indicates functionality via volume transmission. Among the high percentage of 5-HT specific neurons (~ 42\%), a subpopulation of CDH13 + cells presumably designates dorsal raphe neurons. hiPSC-derived 5-HT specific neuronal cell cultures reflect the heterogeneous nature of dorsal and median raphe nuclei and may facilitate examining the association of serotonergic neuron subpopulations with neuropsychiatric disorders.}, language = {en} } @article{ZieglerEhlisWeberetal.2021, author = {Ziegler, Georg C. and Ehlis, Ann-Christine and Weber, Heike and Vitale, Maria Rosaria and Z{\"o}ller, Johanna E. M. and Ku, Hsing-Ping and Schiele, Miriam A. and K{\"u}rbitz, Laura I. and Romanos, Marcel and Pauli, Paul and Kalisch, Raffael and Zwanzger, Peter and Domschke, Katharina and Fallgatter, Andreas J. and Reif, Andreas and Lesch, Klaus-Peter}, title = {A Common CDH13 Variant is Associated with Low Agreeableness and Neural Responses to Working Memory Tasks in ADHD}, series = {Genes}, volume = {12}, journal = {Genes}, number = {9}, issn = {2073-4425}, doi = {10.3390/genes12091356}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245220}, year = {2021}, abstract = {The cell—cell signaling gene CDH13 is associated with a wide spectrum of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD), autism, and major depression. CDH13 regulates axonal outgrowth and synapse formation, substantiating its relevance for neurodevelopmental processes. Several studies support the influence of CDH13 on personality traits, behavior, and executive functions. However, evidence for functional effects of common gene variation in the CDH13 gene in humans is sparse. Therefore, we tested for association of a functional intronic CDH13 SNP rs2199430 with ADHD in a sample of 998 adult patients and 884 healthy controls. The Big Five personality traits were assessed by the NEO-PI-R questionnaire. Assuming that altered neural correlates of working memory and cognitive response inhibition show genotype-dependent alterations, task performance and electroencephalographic event-related potentials were measured by n-back and continuous performance (Go/NoGo) tasks. The rs2199430 genotype was not associated with adult ADHD on the categorical diagnosis level. However, rs2199430 was significantly associated with agreeableness, with minor G allele homozygotes scoring lower than A allele carriers. Whereas task performance was not affected by genotype, a significant heterosis effect limited to the ADHD group was identified for the n-back task. Heterozygotes (AG) exhibited significantly higher N200 amplitudes during both the 1-back and 2-back condition in the central electrode position Cz. Consequently, the common genetic variation of CDH13 is associated with personality traits and impacts neural processing during working memory tasks. Thus, CDH13 might contribute to symptomatic core dysfunctions of social and cognitive impairment in ADHD.}, language = {en} } @article{JanschGuentherWaideretal.2018, author = {Jansch, Charline and G{\"u}nther, Katharina and Waider, Jonas and Ziegler, Georg C. and Forero, Andrea and Kollert, Sina and Svirin, Evgeniy and P{\"u}hringer, Dirk and Kwok, Chee Keong and Ullmann, Reinhard and Maierhofer, Anna and Flunkert, Julia and Haaf, Thomas and Edenhofer, Frank and Lesch, Klaus-Peter}, title = {Generation of a human induced pluripotent stem cell (iPSC) line from a 51-year-old female with attention-deficit/hyperactivity disorder (ADHD) carrying a duplication of SLC2A3}, series = {Stem Cell Research}, volume = {28}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2018.02.005}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176654}, pages = {136-140}, year = {2018}, abstract = {Fibroblasts were isolated from a skin biopsy of a clinically diagnosed 51-year-old female attention-deficit/hyperactivity disorder (ADHD) patient carrying a duplication of SLC2A3, a gene encoding neuronal glucose transporter-3 (GLUT3). Patient fibroblasts were infected with Sendai virus, a single-stranded RNA virus, to generate transgene-free human induced pluripotent stem cells (iPSCs). SLC2A3-D2-iPSCs showed expression of pluripotency-associated markers, were able to differentiate into cells of the three germ layers in vitro and had a normal female karyotype. This in vitro cellular model can be used to study the role of risk genes in the pathogenesis of ADHD, in a patient-specific manner.}, language = {en} } @article{ZieglerAlmosMcNeilletal.2020, author = {Ziegler, Georg C. and Almos, Peter and McNeill, Rhiannon V. and Jansch, Charline and Lesch, Klaus-Peter}, title = {Cellular effects and clinical implications of SLC2A3 copy number variation}, series = {Journal of Cellular Physiology}, volume = {235}, journal = {Journal of Cellular Physiology}, number = {12}, doi = {10.1002/jcp.29753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218009}, pages = {9021 -- 9036}, year = {2020}, abstract = {SLC2A3 encodes the predominantly neuronal glucose transporter 3 (GLUT3), which facilitates diffusion of glucose across plasma membranes. The human brain depends on a steady glucose supply for ATP generation, which consequently fuels critical biochemical processes, such as axonal transport and neurotransmitter release. Besides its role in the central nervous system, GLUT3 is also expressed in nonneural organs, such as the heart and white blood cells, where it is equally involved in energy metabolism. In cancer cells, GLUT3 overexpression contributes to the Warburg effect by answering the cell's increased glycolytic demands. The SLC2A3 gene locus at chromosome 12p13.31 is unstable and prone to non-allelic homologous recombination events, generating multiple copy number variants (CNVs) of SLC2A3 which account for alterations in SLC2A3 expression. Recent associations of SLC2A3 CNVs with different clinical phenotypes warrant investigation of the potential influence of these structural variants on pathomechanisms of neuropsychiatric, cardiovascular, and immune diseases. In this review, we accumulate and discuss the evidence how SLC2A3 gene dosage may exert diverse protective or detrimental effects depending on the pathological condition. Cellular states which lead to increased energetic demand, such as organ development, proliferation, and cellular degeneration, appear particularly susceptible to alterations in SLC2A3 copy number. We conclude that better understanding of the impact of SLC2A3 variation on disease etiology may potentially provide novel therapeutic approaches specifically targeting this GLUT.}, language = {en} } @article{ZieglerRadtkeVitaleetal.2021, author = {Ziegler, Georg C. and Radtke, Franziska and Vitale, Maria Rosaria and Preuße, Andr{\´e} and Klopocki, Eva and Herms, Stefan and Lesch, Klaus-Peter}, title = {Generation of multiple human iPSC lines from peripheral blood mononuclear cells of two SLC2A3 deletion and two SLC2A3 duplication carriers}, series = {Stem Cell Research}, volume = {56}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2021.102526}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-264696}, year = {2021}, abstract = {Copy number variants of SLC2A3, which encodes the glucose transporter GLUT3, are associated with several neuropsychiatric and cardiac diseases. Here, we report the successful reprogramming of peripheral blood mononuclear cells from two SLC2A3 duplication and two SLC2A3 deletion carriers and subsequent generation of two transgene-free iPSC clones per donor by Sendai viral transduction. All eight clones represent bona fide hiPSCs with high expression of pluripotency genes, ability to differentiate into cells of all three germ layers and normal karyotype. The generated cell lines will be helpful to enlighten the role of glucometabolic alterations in pathophysiological processes shared across organ boundaries.}, language = {en} } @article{McNeillZieglerRadtkeetal.2020, author = {McNeill, Rhiannon V. and Ziegler, Georg C. and Radtke, Franziska and Nieberler, Matthias and Lesch, Klaus‑Peter and Kittel‑Schneider, Sarah}, title = {Mental health dished up — the use of iPSC models in neuropsychiatric research}, series = {Journal of Neural Transmission}, volume = {127}, journal = {Journal of Neural Transmission}, issn = {0300-9564}, doi = {10.1007/s00702-020-02197-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235666}, pages = {1547-1568}, year = {2020}, abstract = {Genetic and molecular mechanisms that play a causal role in mental illnesses are challenging to elucidate, particularly as there is a lack of relevant in vitro and in vivo models. However, the advent of induced pluripotent stem cell (iPSC) technology has provided researchers with a novel toolbox. We conducted a systematic review using the PRISMA statement. A PubMed and Web of Science online search was performed (studies published between 2006-2020) using the following search strategy: hiPSC OR iPSC OR iPS OR stem cells AND schizophrenia disorder OR personality disorder OR antisocial personality disorder OR psychopathy OR bipolar disorder OR major depressive disorder OR obsessive compulsive disorder OR anxiety disorder OR substance use disorder OR alcohol use disorder OR nicotine use disorder OR opioid use disorder OR eating disorder OR anorexia nervosa OR attention-deficit/hyperactivity disorder OR gaming disorder. Using the above search criteria, a total of 3515 studies were found. After screening, a final total of 56 studies were deemed eligible for inclusion in our study. Using iPSC technology, psychiatric disease can be studied in the context of a patient's own unique genetic background. This has allowed great strides to be made into uncovering the etiology of psychiatric disease, as well as providing a unique paradigm for drug testing. However, there is a lack of data for certain psychiatric disorders and several limitations to present iPSC-based studies, leading us to discuss how this field may progress in the next years to increase its utility in the battle to understand psychiatric disease.}, language = {en} }