@article{SturmHessWeibeletal.2012, author = {Sturm, Julia B. and Hess, Michael and Weibel, Stephanie and Chen, Nanhei G. and Yu, Yong A. and Zhang, Quian and Donat, Ulrike and Reiss, Cora and Gambaryan, Stepan and Krohne, Georg and Stritzker, Jochen and Szalay, Aladar A.}, title = {Functional hyper-IL-6 from vaccinia virus-colonized tumors triggers platelet formation and helps to alleviate toxicity of mitomycin C enhanced virus therapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75224}, year = {2012}, abstract = {Background: Combination of oncolytic vaccinia virus therapy with conventional chemotherapy has shown promise for tumor therapy. However, side effects of chemotherapy including thrombocytopenia, still remain problematic. Methods: Here, we describe a novel approach to optimize combination therapy of oncolytic virus and chemotherapy utilizing virus-encoding hyper-IL-6, GLV-1h90, to reduce chemotherapy-associated side effects. Results: We showed that the hyper-IL-6 cytokine was successfully produced by GLV-1h90 and was functional both in cell culture as well as in tumor-bearing animals, in which the cytokine-producing vaccinia virus strain was well tolerated. When combined with the chemotherapeutic mitomycin C, the anti-tumor effect of the oncolytic virotherapy was significantly enhanced. Moreover, hyper-IL-6 expression greatly reduced the time interval during which the mice suffered from chemotherapy-induced thrombocytopenia. Conclusion: Therefore, future clinical application would benefit from careful investigation of additional cytokine treatment to reduce chemotherapy-induced side effects.}, subject = {Biologie}, language = {en} } @article{SpringKrohneFrankeetal.1976, author = {Spring, Herbert and Krohne, Georg and Franke, Werner W. and Scheer, Ulrich and Trendelenburg, Michael F.}, title = {Homogeneity and heterogeneity of sizes of transcriptional units and spacer regions in nucleolar genes of Acetabularia}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-41398}, year = {1976}, abstract = {The arrangement of genes of precursor molecules for ribosomal RNA (pre-rRNA) in primary nuclei from two green algae species, Acetabularia mediterranea and A. major, has been analyzed in an electron microscope study. The pattern of transcriptional units in individual strands of nucleolar chromatin was investigated using spread and positively stained preparations. The rDNA pattern is not uniform but differs in different strands. The predominant type of nucleolar chromatin exhibits a high degree of homogeneity in the sequence of matrix units (intercepts covered with fibrilst hat contain the pre-rRNA) and fibril-free spacer intercepts. Substantial differences, however, are observed between the patterns in different strands. In addition, there is evidence in some strands for intraaxial heterogeneity of both spacer and matrix units. The following major types can be distinguished: type la, ca. 2 micrometer long matrix units, extremely short spacer intercepts in A. mediterranea (ca. 1 micrometer long ones in A. major), completely homogeneous distribution; type Ib, as type la but with intercalated, isolated, significantly shorter and/or longer matrix units; type lIa, matrix unit sizes as in type la, but much longer spacer intercepts, high degree of homogeneity; type Ill, largely heterogeneous arrangements of matrix and spacer units of varying sizes. The matrix unit data are compared with the sizes of pre-rRNA as determined by polyacrylamide gelelectrophoresis under denaturing and non-denaturing conditions. The findings are discussed in relation to recent observations in amphibia and insects and with respect to current concepts of the species-specificity of rDNA arrangements.}, language = {en} } @article{RoierLeitnerIwashkiwetal.2012, author = {Roier, Sandro and Leitner, Deborah R. and Iwashkiw, Jeremy and Schild-Pr{\"u}fert, Kristina and Feldman, Mario F. and Krohne, Georg and Reidl, Joachim and Schild, Stefan}, title = {Intranasal Immunization with Nontypeable Haemophilus influenzae Outer Membrane Vesicles Induces Cross-Protective Immunity in Mice}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {8}, doi = {10.1371/journal.pone.0042664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135201}, pages = {e42664}, year = {2012}, abstract = {Haemophilus influenzae is a Gram-negative human-restricted bacterium that can act as a commensal and a pathogen of the respiratory tract. Especially nontypeable H. influenzae (NTHi) is a major threat to public health and is responsible for several infectious diseases in humans, such as pneumonia, sinusitis, and otitis media. Additionally, NTHi strains are highly associated with exacerbations in patients suffering from chronic obstructive pulmonary disease. Currently, there is no licensed vaccine against NTHi commercially available. Thus, this study investigated the utilization of outer membrane vesicles (OMVs) as a potential vaccine candidate against NTHi infections. We analyzed the immunogenic and protective properties of OMVs derived from various NTHi strains by means of nasopharyngeal immunization and colonization studies with BALB/c mice. The results presented herein demonstrate that an intranasal immunization with NTHi OMVs results in a robust and complex humoral and mucosal immune response. Immunoprecipitation revealed the most important immunogenic proteins, such as the heme utilization protein, protective surface antigen D15, heme binding protein A, and the outer membrane proteins P1, P2, P5 and P6. The induced immune response conferred not only protection against colonization with a homologous NTHi strain, which served as an OMV donor for the immunization mixtures, but also against a heterologous NTHi strain, whose OMVs were not part of the immunization mixtures. These findings indicate that OMVs derived from NTHi strains have a high potential to act as a vaccine against NTHi infections.}, language = {en} } @article{KrohneFrankeScheer1978, author = {Krohne, Georg and Franke, Werner W. and Scheer, Ulrich}, title = {The major polypeptides of the nuclear pore complex}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33078}, year = {1978}, abstract = {Nuclear envelopes of maturing oocytes of various amphibia contain an unusually high number of pore complexes in very close packing. Consequently, nuclear envelopes , which can be manually isolated in great purity, provide a remarkable enrichment of nuclear pore complex material, relative to membranous and other interporous structures. When the polypeptides of nuclear envelopes isolated from oocytes of Xenopl/s la evis and Triturus alpestris are examined by gel electrophoresis, visualized either by staining with Coomassie blue or by radiotluorography after in vitro reaction with [3H]dansyl chloride , a characteristic pattern is obtained (10 major and 15 minor bands). This polypeptide pattern is radically different from that of the nuclear contents isolated from the same cell. Extraction of the nuclear envelope with high salt concentrations and moderateIy ac tive detergents such as Triton X- 100 results in the removal of membrane material but leaves most of the non-membranous structure of the pore complexes. The dry weight of the pore complex (about 0.2 femtograms) remains essentially unchanged during such extractions as measured by quantitative electron microscopy . The extracted preparations which are highly enriched in nuclear pore complex material contain only two major polypeptide components with apparent molecular weights of 150000 and 73000. Components of such an electrophoretic mobility are not present as major bands , if at all , in nuclear contents extracted in the same way. lt is concluded that these two polypeptides are the major constituent protein(s) of the oocyte nuclear pore complex and are specific for this structure. When nuclear envelopes are isolated from rat liver and extracted with high salt buffers and Triton X- 100 similar bands are predominant, but two additional major components of molecular weights of 78000 and 66000 are also recognized. When the rat liver nuclear membranes are further subfractionated material enriched in the 66000 molecular weight component can be separated from the membrane material, indicating that this is relatively loosely associated material , probably a part of the nuclear matrix . The results suggest that the nuclear pore complex is not only a characteristic ubiquitous structure but also contains similar, if not identical , skeletal proteins that are remarkably re sistant to drastic changes of ionic strength as weil as to treatments with detergents and thiol reagents.}, language = {en} } @article{MorenoDiazdelaEspinaFrankeKrohneetal.1982, author = {Moreno-Diaz de la Espina, Susana and Franke, Werner W. and Krohne, Georg and Trendelenburg, Michael F. and Grund, Christine and Scheer, Ulrich}, title = {Medusoid fibril bodies: a novel type of nuclear filament of diameter 8 to 12 nm with periodic ultrastructure demonstrated in oocytes of Xenopus laevis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-34116}, year = {1982}, abstract = {No abstract available}, language = {en} } @article{ScheerTrendelenburgKrohneetal.1977, author = {Scheer, Ulrich and Trendelenburg, Michael F. and Krohne, Georg and Franke, Werner W.}, title = {Lengths and patterns of transcriptional units in the amplified nucleoli of oocytes of Xenopus laevis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33069}, year = {1977}, abstract = {Transcriptionally active chromatin from peripheral amplified nuc1eoli of lampbrush-chromosome stage oocytes of Xenopus laevis was dispersed and spread in various solutions of low salt concentrations (incIuding some with additions of detergents) and examined by electron microscopy. Nucleolar material from oocytes of animals with normal (2-nu) and mutant (I-nu) genetical constitution of nucleolus organizers was compared. Histograms showing the distributions of the lengths of matrix units, apparent spacer intercepts, and the total repeating units of the rDNA containing chromatin axes revealed a significant degree of heterogeneity, with indications of subclasses and predominant repeat unit size c1asses of 3.3 and 3.8 11m length. The correspondence of matrix unit length to the molecular weight of the first stable product of rDNA transcription was studied using gel electrophoresis of labelIed pre-rRNA under non-denaturing and denaturing conditions. Evaluations of individual strands of nucleolar chromatin furt her demonstrated the existence of both (i) strands with obviously homogeneous repeating units and (ii) strands with intra-axial heterogeneity of rDNA subunits. " Preludecomplexes ", i.e. groups of transcriptional complexes in apparent spacer intercepts, were not infrequently noted. The data are compared with the measurements of lengths of repeating units in fragments of rDNA obtained by digestion with EcoRI endonuclease as described by Morrow et al. (1974) and Wellauer et al. (1974, 1976a, b). The results are discussed in relation to problems of variations in the modes of arrangement of the pre-rRNA genes, the state of packing of rDNA during transcription, and possible mechanisms of the amplification process.}, language = {en} } @article{FrankeScheerKrohneetal.1981, author = {Franke, Werner W. and Scheer, Ulrich and Krohne, Georg and Jarasch, Ernst-Dieter}, title = {The nuclear envelope and the architecture of the nuclear periphery}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33108}, year = {1981}, abstract = {No abstract available}, language = {en} } @article{FrankeKleinschmidtSpringetal.1981, author = {Franke, Werner W. and Kleinschmidt, J{\"u}rgen A. and Spring, Herbert and Krohne, Georg and Grund, Christine and Trendelenburg, Michael F. and St{\"o}hr, Michael and Scheer, Ulrich}, title = {A nucleolar skeleton of protein filaments demonstrated in amplified nucleoli of Xenopus laevis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33130}, year = {1981}, abstract = {The amplified, extrachromosomal nucleoli of Xenopus oocytes contain a meshwork of -4-nm-thick filaments, which are densely coiled into higher-order fibrils of diameter 30-40 nm and are resistant to treatment with high- and low-salt concentrations, nucleases (DNase I, pancreatic RNase, micrococcal nuclease), sulfhydryl agents, and various nonionic detergents. This filamentous "skeleton" has been prepared from manually isolated nuclear contents and nucleoli as weil as from nucleoli isolated by fluorescence-activated particle sorting. The nucleolar skeletons are observed in light and electron microscopy and are characterized by ravels of filaments that are especially densely packed in the nucleolar cortex. DNA as weil as RNA are not constituents of this structure, and precursors to ribosomal RNAs are completely removed from the extraction-resistant filaments by treatment with high-salt buffer or RN ase. Fractions of isolated nucleolar skeletons show specific enrichment of an acidic major protein of 145,000 mol wt and an apparent pi value of -6.15, accompanied in some preparations by various amounts of minor proteins. The demonstration of this skeletal structure in "free" extrachromosomal nucleoli excludes the problem of contaminations by nonnucleolar material such as perinucleolar heterochromatin normally encountered in studies of nucleoli from somatic cells. It is suggested that this insoluble protein filament complex forms a skeleton specific to the nucleolus proper that is different from other extraction-resistant components of the nucleus such as matrix and lamina and is involved in the spatial organization of the nucleolar chromatin and its transcriptional products. In studies of the organization of the interphase nucleus, considerable progress has been made in the elucidation of the arrangement of chromatin components and transcriptional products. However, relatively little is known about the composition and function of another category of nuclear structures, the nonnucleoproteinaceous architectural components that are insoluble in solutions of low and high ionic strength, despite numerous studies dedicated to this problem. Such structures include (a) the nuclear envelope and its pore complexes (I, 15, 18, 23, 37, 41), (b) a peripheral layer of insoluble protein ("lamina"; I, 15, 22, 23, 59), (e) certain skeletal proteins related to the chromosome "scaffold" described by Laemmli and coworkers (see references 2 and 3), and (d) ill-defined tangles of fibrillar structures of the nuclear interior that are collectively described as residual "matrix" (6, 21 ; for reviews, see references THE JOURNAL OF CEll BrOlOGY . VOlUME 90 AUGUST 1981 289-299 © The RockefeIler University Press · 0021 -9525/ 81 / 08/ 0289/ 11 \$1 .00 4 and 12). The latter, preparatively}, language = {en} } @article{DjuzenovaMemmelSukhorukovetal.2014, author = {Djuzenova, Cholpon S. and Memmel, Simon and Sukhorukov, Vladimir L. and H{\"o}ring, Marcus and Westerling, Katherine and Fiedler, Vanessa and Katzer, Astrid and Krohne, Georg and Flentje, Michael}, title = {Cell Surface Area and Membrane Folding in Glioblastoma Cell Lines Differing in PTEN and p53 Status}, doi = {10.1371/journal.pone.0087052}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111322}, year = {2014}, abstract = {Glioblastoma multiforme (GBM) is characterized by rapid growth, invasion and resistance to chemo-/radiotherapy. The complex cell surface morphology with abundant membrane folds, microvilli, filopodia and other membrane extensions is believed to contribute to the highly invasive behavior and therapy resistance of GBM cells. The present study addresses the mechanisms leading to the excessive cell membrane area in five GBM lines differing in mutational status for PTEN and p53. In addition to scanning electron microscopy (SEM), the membrane area and folding were quantified by dielectric measurements of membrane capacitance using the single-cell electrorotation (ROT) technique. The osmotic stability and volume regulation of GBM cells were analyzed by video microscopy. The expression of PTEN, p53, mTOR and several other marker proteins involved in cell growth and membrane synthesis were examined by Western blotting. The combined SEM, ROT and osmotic data provided independent lines of evidence for a large variability in membrane area and folding among tested GBM lines. Thus, DK-MG cells (wild type p53 and wild type PTEN) exhibited the lowest degree of membrane folding, probed by the area-specific capacitance Cm = 1.9 µF/cm2. In contrast, cell lines carrying mutations in both p53 and PTEN (U373-MG and SNB19) showed the highest Cm values of 3.7-4.0 µF/cm2, which corroborate well with their heavily villated cell surface revealed by SEM. Since PTEN and p53 are well-known inhibitors of mTOR, the increased membrane area/folding in mutant GBM lines may be related to the enhanced protein and lipid synthesis due to a deregulation of the mTOR-dependent downstream signaling pathway. Given that membrane folds and extensions are implicated in tumor cell motility and metastasis, the dielectric approach presented here provides a rapid and simple tool for screening the biophysical cell properties in studies on targeting chemo- or radiotherapeutically the migration and invasion of GBM and other tumor types.}, language = {en} } @article{BrehmKoziolKrohne2013, author = {Brehm, Klaus and Koziol, Uriel and Krohne, Georg}, title = {Anatomy and development of the larval nervous system in Echinococcus multilocularis}, series = {Frontiers in Zoology}, journal = {Frontiers in Zoology}, doi = {10.1186/1742-9994-10-24}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96504}, year = {2013}, abstract = {Background The metacestode larva of Echinococcus multilocularis (Cestoda: Taeniidae) develops in the liver of intermediate hosts (typically rodents, or accidentally in humans) as a labyrinth of interconnected cysts that infiltrate the host tissue, causing the disease alveolar echinococcosis. Within the cysts, protoscoleces (the infective stage for the definitive canid host) arise by asexual multiplication. These consist of a scolex similar to that of the adult, invaginated within a small posterior body. Despite the importance of alveolar echinococcosis for human health, relatively little is known about the basic biology, anatomy and development of E. multilocularis larvae, particularly with regard to their nervous system. Results We describe the existence of a subtegumental nerve net in the metacestode cysts, which is immunoreactive for acetylated tubulin-α and contains small populations of nerve cells that are labeled by antibodies raised against several invertebrate neuropeptides. However, no evidence was found for the existence of cholinergic or serotoninergic elements in the cyst wall. Muscle fibers occur without any specific arrangement in the subtegumental layer, and accumulate during the invaginations of the cyst wall that form brood capsules, where protoscoleces develop. The nervous system of the protoscolex develops independently of that of the metacestode cyst, with an antero-posterior developmental gradient. The combination of antibodies against several nervous system markers resulted in a detailed description of the protoscolex nervous system, which is remarkably complex and already similar to that of the adult worm. Conclusions We provide evidence for the first time of the existence of a nervous system in the metacestode cyst wall, which is remarkable given the lack of motility of this larval stage, and the lack of serotoninergic and cholinergic elements. We propose that it could function as a neuroendocrine system, derived from the nervous system present in the bladder tissue of other taeniids. The detailed description of the development and anatomy of the protoscolex neuromuscular system is a necessary first step toward the understanding of the developmental mechanisms operating in these peculiar larval stages.}, language = {en} } @article{BrehmKoziolRauschendorferetal.2014, author = {Brehm, Klaus and Koziol, Uriel and Rauschendorfer, Theresa and Rodr{\´i}guez, Luis Zanon and Krohne, Georg}, title = {The unique stem cell system of the immortal larva of the human parasite Echinococcus multilocularis}, doi = {10.1186/2041-9139-5-10}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110315}, year = {2014}, abstract = {Background It is believed that in tapeworms a separate population of undifferentiated cells, the germinative cells, is the only source of cell proliferation throughout the life cycle (similar to the neoblasts of free living flatworms). In Echinococcus multilocularis, the metacestode larval stage has a unique development, growing continuously like a mass of vesicles that infiltrate the tissues of the intermediate host, generating multiple protoscoleces by asexual budding. This unique proliferation potential indicates the existence of stem cells that are totipotent and have the ability for extensive self-renewal. Results We show that only the germinative cells proliferate in the larval vesicles and in primary cell cultures that undergo complete vesicle regeneration, by using a combination of morphological criteria and by developing molecular markers of differentiated cell types. The germinative cells are homogeneous in morphology but heterogeneous at the molecular level, since only sub-populations express homologs of the post-transcriptional regulators nanos and argonaute. Important differences are observed between the expression patterns of selected neoblast marker genes of other flatworms and the E. multilocularis germinative cells, including widespread expression in E. multilocularis of some genes that are neoblast-specific in planarians. Hydroxyurea treatment results in the depletion of germinative cells in larval vesicles, and after recovery following hydroxyurea treatment, surviving proliferating cells grow as patches that suggest extensive self-renewal potential for individual germinative cells. Conclusions In E. multilocularis metacestodes, the germinative cells are the only proliferating cells, presumably driving the continuous growth of the larval vesicles. However, the existence of sub-populations of the germinative cells is strongly supported by our data. Although the germinative cells are very similar to the neoblasts of other flatworms in function and in undifferentiated morphology, their unique gene expression pattern and the evolutionary loss of conserved stem cells regulators suggest that important differences in their physiology exist, which could be related to the unique biology of E. multilocularis larvae.}, language = {en} } @article{DuettingGaitsIacovoniStegneretal.2017, author = {D{\"u}tting, Sebastian and Gaits-Iacovoni, Frederique and Stegner, David and Popp, Michael and Antkowiak, Adrien and van Eeuwijk, Judith M.M. and Nurden, Paquita and Stritt, Simon and Heib, Tobias and Aurbach, Katja and Angay, Oguzhan and Cherpokova, Deya and Heinz, Niels and Baig, Ayesha A. and Gorelashvili, Maximilian G. and Gerner, Frank and Heinze, Katrin G. and Ware, Jerry and Krohne, Georg and Ruggeri, Zaverio M. and Nurden, Alan T. and Schulze, Harald and Modlich, Ute and Pleines, Irina and Brakebusch, Cord and Nieswandt, Bernhard}, title = {A Cdc42/RhoA regulatory circuit downstream of glycoprotein Ib guides transendothelial platelet biogenesis}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {15838}, doi = {10.1038/ncomms15838}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170797}, year = {2017}, abstract = {Blood platelets are produced by large bone marrow (BM) precursor cells, megakaryocytes (MKs), which extend cytoplasmic protrusions (proplatelets) into BM sinusoids. The molecular cues that control MK polarization towards sinusoids and limit transendothelial crossing to proplatelets remain unknown. Here, we show that the small GTPases Cdc42 and RhoA act as a regulatory circuit downstream of the MK-specific mechanoreceptor GPIb to coordinate polarized transendothelial platelet biogenesis. Functional deficiency of either GPIb or Cdc42 impairs transendothelial proplatelet formation. In the absence of RhoA, increased Cdc42 activity and MK hyperpolarization triggers GPIb-dependent transmigration of entire MKs into BM sinusoids. These findings position Cdc42 (go-signal) and RhoA (stop-signal) at the centre of a molecular checkpoint downstream of GPIb that controls transendothelial platelet biogenesis. Our results may open new avenues for the treatment of platelet production disorders and help to explain the thrombocytopenia in patients with Bernard-Soulier syndrome, a bleeding disorder caused by defects in GPIb-IX-V.}, language = {en} } @article{ReilingKrohneFriedrichetal.2018, author = {Reiling, Sarah J. and Krohne, Georg and Friedrich, Oliver and Geary, Timothy G. and Rohrbach, Petra}, title = {Chloroquine exposure triggers distinct cellular responses in sensitive versus resistant Plasmodium falciparum parasites}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {11137}, doi = {10.1038/s41598-018-29422-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225123}, pages = {1-11}, year = {2018}, abstract = {Chloroquine (CQ) treatment failure in Plasmodium falciparum parasites has been documented for decades, but the pharmacological explanation of this phenotype is not fully understood. Current concepts attribute CQ resistance to reduced accumulation of the drug at a given external CQ concentration ([CQ] ex) in resistant compared to sensitive parasites. The implication of this explanation is that the mechanisms of CQ-induced toxicity in resistant and sensitive strains are similar once lethal internal concentrations have been reached. To test this hypothesis, we investigated the mechanism of CQ-induced toxicity in CQ-sensitive (CQS) versus CQ-resistant (CQR) parasites by analyzing the time-course of cellular responses in these strains after exposure to varying [CQ] ex as determined in 72 h toxicity assays. Parasite killing was delayed in CQR parasites for up to 10 h compared to CQS parasites when exposed to equipotent [CQ] ex. In striking contrast, brief exposure (1 h) to lethal [CQ] ex in CQS but not CQR parasites caused the appearance of hitherto undescribed hemozoin (Hz)-containing compartments in the parasite cytosol. Hz-containing compartments were very rarely observed in CQR parasites even after CQ exposures sufficient to cause irreversible cell death. These findings challenge current concepts that CQ killing of malaria parasites is solely concentration-dependent, and instead suggest that CQS and CQR strains fundamentally differ in the consequences of CQ exposure.}, language = {en} }