@phdthesis{GilPulido2018, author = {Gil Pulido, Jes{\´u}s}, title = {The role of Batf3-dependent dendritic cells and the IL-23 receptor in atherosclerosis}, doi = {10.25972/OPUS-16720}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167203}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Cardiovascular diseases represent the leading cause of death worldwide, with myocardial infarction and strokes being the most common complications. In both cases, the appearance of an enlarged artery wall as a consequence of a growing plaque is responsible for the disturbance of the blood flow. The formation of plaques is driven by a chronic inflammatory condition known as atherosclerosis, characterized by an initial step of endothelial cell (EC) dysfunction followed by the recruitment of circulating immune cells into the tunica intima of the vessel. Accumulation of lipids and cells lead to the formation of atheromatous plaques that will define the cardiovascular outcome of an individual. The role of the immune system in the progression of atherosclerosis has been widely recognized. By far, macrophages constitute the most abundant cell type in lesions and are known to be the major source of the lipid-laden foam cell pool during the course of the disease. However, other immune cells types, including T cells, dendritic cells (DCs) or mast cells, among others, have been described to be present in human and mouse plaques. How these populations can modulate the atherogenic process is dependent on their specialized function. DCs constitute a unique population with the ability to bridge innate and adaptive immune responses, mainly by their strong capacity to present antigens bound to a major histocompatibility complex (MHC) molecule. Given their ability to polarize T cells and secrete cytokines, their role in atherosclerosis has gained attention for the development of new therapeutic approaches that could impact lesion growth. Hence, knowing the effect of a specific subset is an initial key step to evaluate its potential for clinical purposes. For example, the basic leucine zipper ATF-like 3 transcription factor (Batf3) controls the development of conventional dendritic cells type 1 (cDCs1), characterized by the expression of the surface markers CD8 and CD103. Initially, they were described to promote both T-helper 1 (Th1) and regulatory T cell (Treg) responses, known to accelerate and to protect against atherosclerosis, respectively. The first part of this thesis aimed to elucidate the potential role of Batf3-dependent DCs in atherosclerosis and concluded that even though systemic immune responses were mildly altered they do not modify the course of the disease and may not represent an attractive candidate for clinical studies. DCs also have the ability to impact lesion growth through the release of a broad range of cytokines, which can either directly impact atherosclerotic plaques by modulating resident cells, or by further polarizing T cell responses. Among others, interleukin (IL) 23, a member of the IL-12 family of cytokines, has received much attention during the past year due to its connection to autoimmunity. IL-23 is known to induce pathogenicity of Th17 cells and is responsible for the development of several autoimmune diseases including multiple sclerosis, psoriasis or rheumatoid arthritis. Interestingly, these patients often present with an accelerated course of atherosclerosis and thus, are at higher risk of developing cardiovascular events. Several epidemiological studies have pointed toward a possible connection between IL-23 and its receptor IL-23R in atherosclerosis, although their exact contribution remains to be elucidated. The second part of this thesis showed that resident antigen-presenting cells (APCs) in the aorta produced IL-23 during the steady state but this secretion was greatly enhanced after incubation with oxidized low-density lipoprotein (oxLDL). Furthermore, disruption of the IL-23R signaling led to decreased relative necrotic plaque area in lesions of Ldlr-/-Il23r-/- mice fed a high-fat diet (HFD) for 6 and 12 weeks compared to Ldlr-/- controls. A proposed mechanism involves that increased IL-23 production in the context of atherosclerosis may promote the pathogenicity of IL-23-responding T cells, especially IL-23R+ γδ T cells in the aortic root. Response to IL-23 might increase the release of granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-17 and alter the pro- and anti-inflammatory balance of cytokines in the aortic root. Altogether, these data showed that the IL-23 / IL-23R axis play a role in plaque stability.}, subject = {Arteriosklerose}, language = {en} } @article{GaritanoTrojaolaSanchoGoetzetal.2021, author = {Garitano-Trojaola, Andoni and Sancho, Ana and G{\"o}tz, Ralph and Eiring, Patrick and Walz, Susanne and Jetani, Hardikkumar and Gil-Pulido, Jesus and Da Via, Matteo Claudio and Teufel, Eva and Rhodes, Nadine and Haertle, Larissa and Arellano-Viera, Estibaliz and Tibes, Raoul and Rosenwald, Andreas and Rasche, Leo and Hudecek, Michael and Sauer, Markus and Groll, J{\"u}rgen and Einsele, Hermann and Kraus, Sabrina and Kort{\"u}m, Martin K.}, title = {Actin cytoskeleton deregulation confers midostaurin resistance in FLT3-mutant acute myeloid leukemia}, series = {Communications Biology}, volume = {4}, journal = {Communications Biology}, number = {1}, doi = {10.1038/s42003-021-02215-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260709}, year = {2021}, abstract = {The presence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with an unfavorable prognosis. FLT3 inhibitors, such as midostaurin, are used clinically but fail to entirely eradicate FLT3-ITD+AML. This study introduces a new perspective and highlights the impact of RAC1-dependent actin cytoskeleton remodeling on resistance to midostaurin in AML. RAC1 hyperactivation leads resistance via hyperphosphorylation of the positive regulator of actin polymerization N-WASP and antiapoptotic BCL-2. RAC1/N-WASP, through ARP2/3 complex activation, increases the number of actin filaments, cell stiffness and adhesion forces to mesenchymal stromal cells (MSCs) being identified as a biomarker of resistance. Midostaurin resistance can be overcome by a combination of midostaruin, the BCL-2 inhibitor venetoclax and the RAC1 inhibitor Eht1864 in midostaurin-resistant AML cell lines and primary samples, providing the first evidence of a potential new treatment approach to eradicate FLT3-ITD+AML. Garitano-Trojaola et al. used a combination of human acute myeloid leukemia (AML) cell lines and primary samples to show that RAC1-dependent actin cytoskeleton remodeling through BCL2 family plays a key role in resistance to the FLT3 inhibitor, Midostaurin in AML. They showed that by targeting RAC1 and BCL2, Midostaurin resistance was diminished, which potentially paves the way for an innovate treatment approach for FLT3 mutant AML.}, language = {en} } @article{GilPulidoCochainLippertetal.2017, author = {Gil-Pulido, Jesus and Cochain, Clement and Lippert, Malte A. and Schneider, Nicole and Butt, Elke and Am{\´e}zaga, N{\´u}ria and Zernecke, Alma}, title = {Deletion of Batf3-dependent antigen-presenting cells does not affect atherosclerotic lesion formation in mice}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal.pone.0181947}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170535}, pages = {e0181947}, year = {2017}, abstract = {Atherosclerosis is the main underlying cause for cardiovascular events such as myocardial infarction and stroke and its development might be influenced by immune cells. Dendritic cells (DCs) bridge innate and adaptive immune responses by presenting antigens to T cells and releasing a variety of cytokines. Several subsets of DCs can be discriminated that engage specific transcriptional pathways for their development. Basic leucine zipper transcription factor ATF-like 3 (Batf3) is required for the development of classical CD8α\(^{+}\) and CD103\(^{+}\) DCs. By crossing mice deficient in Batf3 with atherosclerosis-prone low density lipoprotein receptor (Ldlr\(^{-/-}\))-deficient mice we here aimed to further address the contribution of Batf3-dependent CD8α\(^{+}\) and CD103\(^{+}\) antigen-presenting cells to atherosclerosis. We demonstrate that deficiency in Batf3 entailed mild effects on the immune response in the spleen but did not alter atherosclerotic lesion formation in the aorta or aortic root, nor affected plaque phenotype in low density lipoprotein receptor-deficient mice fed a high fat diet. We thus provide evidence that Batf3-dependent antigen-presenting cells do not have a prominent role in atherosclerosis.}, language = {en} }