@article{MooijvanWijkBeusenetal.2019, author = {Mooij, Wolf M and van Wijk, Dianneke and Beusen, Arthur HW and Brederveld, Robert J and Chang, Manqi and Cobben, Marleen MP and DeAngelis, Don L and Downing, Andrea S and Green, Pamela and Gsell, Alena S and Huttunen, Inese and Janse, Jan H and Janssen, Annette BG and Hengeveld, Geerten M and Kong, Xiangzhen and Kramer, Lilith and Kuiper, Jan J and Langan, Simon J and Nolet, Bart A and Nuijten, Rascha JM and Strokal, Maryna and Troost, Tineke A and van Dam, Anne A and Teurlincx, Sven}, title = {Modeling water quality in the Anthropocene: directions for the next-generation aquatic ecosystem models}, series = {Current Opinion in Environmental Sustainability}, volume = {36}, journal = {Current Opinion in Environmental Sustainability}, doi = {10.1016/j.cosust.2018.10.012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224173}, pages = {85-95}, year = {2019}, abstract = {"Everything changes and nothing stands still" (Heraclitus). Here we review three major improvements to freshwater aquatic ecosystem models — and ecological models in general — as water quality scenario analysis tools towards a sustainable future. To tackle the rapid and deeply connected dynamics characteristic of the Anthropocene, we argue for the inclusion of eco-evolutionary, novel ecosystem and social-ecological dynamics. These dynamics arise from adaptive responses in organisms and ecosystems to global environmental change and act at different integration levels and different time scales. We provide reasons and means to incorporate each improvement into aquatic ecosystem models. Throughout this study we refer to Lake Victoria as a microcosm of the evolving novel social-ecological systems of the Anthropocene. The Lake Victoria case clearly shows how interlinked eco-evolutionary, novel ecosystem and social-ecological dynamics are, and demonstrates the need for transdisciplinary research approaches towards global sustainability.}, language = {en} } @article{PeixotoBentmannRuessmannetal.2020, author = {Peixoto, Thiago R. F. and Bentmann, Hendrik and R{\"u}ßmann, Philipp and Tcakaev, Abdul-Vakhab and Winnerlein, Martin and Schreyeck, Steffen and Schatz, Sonja and Vidal, Raphael Crespo and Stier, Fabian and Zabolotnyy, Volodymyr and Green, Robert J. and Min, Chul Hee and Fornari, Celso I. and Maaß, Henriette and Vasili, Hari Babu and Gargiani, Pierluigi and Valvidares, Manuel and Barla, Alessandro and Buck, Jens and Hoesch, Moritz and Diekmann, Florian and Rohlf, Sebastian and Kall{\"a}ne, Matthias and Rossnagel, Kai and Gould, Charles and Brunner, Karl and Bl{\"u}gel, Stefan and Hinkov, Vladimir and Molenkamp, Laurens W. and Friedrich, Reinert}, title = {Non-local effect of impurity states on the exchange coupling mechanism in magnetic topological insulators}, series = {NPJ Quantum Materials}, volume = {5}, journal = {NPJ Quantum Materials}, doi = {10.1038/s41535-020-00288-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230686}, year = {2020}, abstract = {Since the discovery of the quantum anomalous Hall (QAH) effect in the magnetically doped topological insulators (MTI) Cr:(Bi,Sb)\(_2\)Te\(_3\) and V:(Bi,Sb)\(_2\)Te\(_3\), the search for the magnetic coupling mechanisms underlying the onset of ferromagnetism has been a central issue, and a variety of different scenarios have been put forward. By combining resonant photoemission, X-ray magnetic circular dichroism and density functional theory, we determine the local electronic and magnetic configurations of V and Cr impurities in (Bi,Sb)\(_2\)Te\(_3\). State-of-the-art first-principles calculations find pronounced differences in their 3d densities of states, and show how these impurity states mediate characteristic short-range pd exchange interactions, whose strength sensitively varies with the position of the 3d states relative to the Fermi level. Measurements on films with varying host stoichiometry support this trend. Our results explain, in an unified picture, the origins of the observed magnetic properties, and establish the essential role of impurity-state-mediated exchange interactions in the magnetism of MTI.}, language = {en} }