@article{GroeberSchoberSchmidetal.2016, author = {Groeber, Florian and Schober, Lena and Schmid, Freia F. and Traube, Andrea and Kolbus-Hernandez, Silvia and Daton, Karolina and Hoffmann, Sebastian and Petersohn, Dirk and Schaefer-Korting, Monika and Walles, Heike and Mewes, Karsten R.}, title = {Catch-up validation study of an in vitro skin irritation test method based on an open source reconstructed epidermis (phase II)}, series = {Toxicology in Vitro}, volume = {36}, journal = {Toxicology in Vitro}, doi = {10.1016/j.tiv.2016.07.008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187311}, pages = {254-261}, year = {2016}, abstract = {To replace the Draize skin irritation assay (OECD guideline 404) several test methods based on reconstructed human epidermis (RHE) have been developed and were adopted in the OECD test guideline 439. However, all validated test methods in the guideline are linked to RHE provided by only three companies. Thus,the availability of these test models is dependent on the commercial interest of the producer. To overcome this limitation and thus to increase the accessibility of in vitro skin irritation testing, an open source reconstructed epidermis (OS-REp) was introduced. To demonstrate the capacity of the OS-REp in regulatory risk assessment, a catch-up-validation study was performed. The participating laboratories used in-house generated OS-REp to assess the set of 20 reference substances according to the performance standards amending the OECD test guideline 439. Testing was performed under blinded conditions. The within-laboratory reproducibility of 87\% and the inter-laboratory reproducibility of 85\% prove a high reliability of irritancy testing using the OS-REp protocol. In addition, the prediction capacity was with an accuracy of 80\% comparable to previous published RHE based test protocols. Taken together the results indicate that the OS-REp test method can be used as a standalone alternative skin irritation test replacing the OECD test guideline 404.}, language = {en} } @article{BrendtkeWiehlGroeberetal.2016, author = {Brendtke, Rico and Wiehl, Michael and Groeber, Florian and Schwarz, Thomas and Walles, Heike and Hansmann, Jan}, title = {Feasibility Study on a Microwave-Based Sensor for Measuring Hydration Level Using Human Skin Models}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0153145}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179934}, year = {2016}, abstract = {Tissue dehydration results in three major types of exsiccosis—hyper-, hypo-, or isonatraemia. All three types entail alterations of salt concentrations leading to impaired biochemical processes, and can finally cause severe morbidity. The aim of our study was to demonstrate the feasibility of a microwave-based sensor technology for the non-invasive measurement of the hydration status. Electromagnetic waves at high frequencies interact with molecules, especially water. Hence, if a sample contains free water molecules, this can be detected in a reflected microwave signal. To develop the sensor system, human three-dimensional skin equivalents were instituted as a standardized test platform mimicking reproducible exsiccosis scenarios. Therefore, skin equivalents with a specific hydration and density of matrix components were generated and microwave measurements were performed. Hydration-specific spectra allowed deriving the hydration state of the skin models. A further advantage of the skin equivalents was the characterization of the impact of distinct skin components on the measured signals to investigate mechanisms of signal generation. The results demonstrate the feasibility of a non-invasive microwave-based hydration sensor technology. The sensor bears potential to be integrated in a wearable medical device for personal health monitoring.}, language = {en} } @phdthesis{Groeber2014, author = {Groeber, Florian}, title = {Etablierung eines vaskularisierten Haut{\"a}quivalentes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-107453}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Durch Methoden des Tissue Engineerings hergestellte dreidimensionale Haut{\"a}quivalente bilden die native humane Haut hinsichtlich ihrer histologischen Architektur, zellul{\"a}ren Zusammensetzung und metabolischen Aktivit{\"a}t ab. Diese Gewebe eignen sich daher als zellbasierte Wundauflagen f{\"u}r großfl{\"a}chige Hautdefekte oder als In-vitro-Testsysteme f{\"u}r den Ersatz von Tierversuchen. Bei bisherigen Haut{\"a}quivalenten fehlt jedoch ein funktionelles Blutgef{\"a}ßsystem. Wird solch ein Gewebe als Implantat eingesetzt, f{\"u}hrt das Fehlen von Blutgef{\"a}ßen zu einer unzureichenden Versorgung mit N{\"a}hrstoffen und zur Nekrose. Neben dieser klinischen Limitation ist auch das Anwendungsspektrum als In-vitro-Testsystem begrenzt. Bei nicht vaskularisierten Hautmodellen kann eine transdermale Penetration von Substanzen nicht akkurat abgesch{\"a}tzt werden, da die zus{\"a}tzliche Barriere, welche die gef{\"a}ßauskleidenden Endothelzellen bilden, nicht enthalten ist. In Studien zur Integration eines Gef{\"a}ßsystems in Haut{\"a}quivalente konnte bislang lediglich gezeigt werden, dass sich Endothelzellen zu gef{\"a}ßartigen Strukturen zusammenlagern. Die Bildung von funktionellen perfundierbaren Gef{\"a}ßen in einem in vitro generierten Haut{\"a}quivalent ist bisher jedoch noch nicht belegt. Entsprechend ist eine direkte Anastomose mit dem Blutkreislauf eines Patienten bei einem klinischen Einsatz als Hautimplantat nicht m{\"o}glich. Bei einer Anwendung in In-vitro-Studien ist zudem das Gef{\"a}ßsystem experimentell nicht zug{\"a}nglich. In der vorliegenden Arbeit kann durch die Kombination einer biologischen, vaskularisierten Tr{\"a}gerstruktur (BioVaSc) mit einem neu entwickelten Bioreaktorsystems, ein Haut{\"a}quivalent mit einem perfundierbaren Gef{\"a}ßsystem hergestellt werden. Die Generierung dieser sogenannten SkinVaSc erfolgt {\"u}ber die Besiedlung der BioVaSc mit humanen Keratinozyten (hEK) und Fibroblasten. Parallel dazu werden die eingebetteten Gef{\"a}ßstrukturen der BioVaSc mit humanen mikrovaskul{\"a}ren Endothelzellen (hDMEC) rebesiedelt. Durch eine Anastomose zwischen den Gef{\"a}ßen der BioVaSc und dem Bioreaktorsystem ist eine Perfusion mit physiologisch, gepulsten Dr{\"u}cken zwischen 80 und 120 mmHG m{\"o}glich. Optimale Kulturbedingungen f{\"u}r die Haut- zellen k{\"o}nnen ferner durch zwei Kulturmodi generiert werden. Zur optimalen Versorgung der hEK innerhalb einer Proliferationsphase, die sich an die Zellaussaat anschließt, erfolgt eine kontinuierliche Versorgung der Oberfl{\"a}che der SkinVaSc mit Medium. Der zweite Modus stimuliert die Differenzierung der hEK durch eine Kultivierung des Modells an der Grenzfl{\"a}che zwischen Luft und Medium. Nach einer vierzehnt{\"a}gigen Kultivierung der SkinVaSc an der Luft Medium Grenzfl{\"a}che l{\"a}sst sich die Bildung einer hautspezifischen histologischen Architektur durch H{\"a}malaun/Eosin und immunhistologische F{\"a}rbungen belegen. Eine nat{\"u}rlich differenzierte Epidermis wird durch eine Basalmembran, die Kollagen Typ IV und Laminin 5 enth{\"a}lt von einen dermalen Teil getrennt. Die Dermale-Epidermale-Verbindung erscheint durch die Mikrostrukturierung der BioVaSc wellenf{\"o}rmig. Damit bildet die SkinVaSc die papillare Struktur der nativen humanen Haut ab. Innerhalb des dermalen Anteils k{\"o}nnen zudem Gef{\"a}ßstrukturen ausgemacht werden. Die Innenseite der Gef{\"a}ße sind durch eine Schicht aus hDMEC ausgekleidet, die endothelzellspe- zifische Oberfl{\"a}chenmarker wie "platelet endothelial cell adhesion molecule 1" und "von Willebrand Faktor" aufweisen. Eine zerst{\"o}rungsfreie {\"U}berwachung der SkinVaSc hinsichtlich der epidermalen Differenzierung ist durch eine integrierte Sensortechnologie auf Basis der Impedanz-spektroskopie m{\"o}glich. Dabei erlaubt ein entwickeltes mathematisches Modell die Extraktion von biologisch relevanten Informationen aus Impedanzspektren in einem Frequenzbereich zwischen 1 Hz und 100 kHz. Innerhalb dieser Studien ließ sich zeigen, dass die epidermale Differenzierung zu einer signifikanten Steigerung des ohmschen Widerstandes von 245,3 Ohm*cm2 zu 1108,1 Ohm*cm2 f{\"u}hrt. Gleichzeitig sinkt die zellul{\"a}re Kapazit{\"a}t von 131,5µF/cm2 auf 5,4µF/cm2 ab. Durch diese Parameter ist es m{\"o}glich die epidermale Barriere zerst{\"o}rungsfrei {\"u}ber die Kultivierungszeit zu {\"u}berwachen. Das Gef{\"a}ßsystem der SkinVaSc erm{\"o}glicht es mehr dermatologische Fragestellungen in vitro zu untersuchen und damit Tierversuche zu ersetzen. Zudem kann auf Basis der SkinVaSc ein vaskularisiertes Hautimplantat entwickelt werden, das es erm{\"o}glicht tiefe Hautverletzungen zu behandeln.}, subject = {Tisuue Engineering}, language = {de} } @article{SchneiderKruseBernardellideMattosetal.2021, author = {Schneider, Verena and Kruse, Daniel and Bernardelli de Mattos, Ives and Z{\"o}phel, Saskia and Tiltmann, Kendra-Kathrin and Reigl, Amelie and Khan, Sarah and Funk, Martin and Bodenschatz, Karl and Groeber-Becker, Florian}, title = {A 3D in vitro model for burn wounds: monitoring of regeneration on the epidermal level}, series = {Biomedicines}, volume = {9}, journal = {Biomedicines}, number = {9}, issn = {2227-9059}, doi = {10.3390/biomedicines9091153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246068}, year = {2021}, abstract = {Burns affect millions every year and a model to mimic the pathophysiology of such injuries in detail is required to better understand regeneration. The current gold standard for studying burn wounds are animal models, which are under criticism due to ethical considerations and a limited predictiveness. Here, we present a three-dimensional burn model, based on an open-source model, to monitor wound healing on the epidermal level. Skin equivalents were burned, using a preheated metal cylinder. The healing process was monitored regarding histomorphology, metabolic changes, inflammatory response and reepithelialization for 14 days. During this time, the wound size decreased from 25\% to 5\% of the model area and the inflammatory response (IL-1β, IL-6 and IL-8) showed a comparable course to wounding and healing in vivo. Additionally, the topical application of 5\% dexpanthenol enhanced tissue morphology and the number of proliferative keratinocytes in the newly formed epidermis, but did not influence the overall reepithelialization rate. In summary, the model showed a comparable healing process to in vivo, and thus, offers the opportunity to better understand the physiology of thermal burn wound healing on the keratinocyte level.}, language = {en} } @article{GroeberEngelhardtLangeetal.2016, author = {Groeber, Florian and Engelhardt, Lisa and Lange, Julia and Kurdyn, Szymon and Schmid, Freia F. and R{\"u}cker, Christoph and Mielke, Stephan and Walles, Heike and Hansmann, Jan}, title = {A First Vascularized Skin Equivalent as an Alternative to Animal Experimentation}, series = {ALTEX - Alternatives to Animal Experimentation}, volume = {33}, journal = {ALTEX - Alternatives to Animal Experimentation}, number = {4}, doi = {10.14573/altex.1604041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164438}, pages = {415-422}, year = {2016}, abstract = {Tissue-engineered skin equivalents mimic key aspects of the human skin, and can thus be employed as wound coverage for large skin defects or as in vitro test systems as an alternative to animal models. However, current skin equivalents lack a functional vasculature limiting clinical and research applications. This study demonstrates the generation of a vascularized skin equivalent with a perfused vascular network by combining a biological vascularized scaffold (BioVaSc) based on a decellularized segment of a porcine jejunum and a tailored bioreactor system. Briefly, the BioVaSc was seeded with human fibroblasts, keratinocytes, and human microvascular endothelial cells. After 14 days at the air-liquid interface, hematoxylin \& eosin and immunohistological staining revealed a specific histological architecture representative of the human dermis and epidermis including a papillary-like architecture at the dermal-epidermal-junction. The formation of the skin barrier was measured non-destructively using impedance spectroscopy. Additionally, endothelial cells lined the walls of the formed vessels that could be perfused with a physiological volume flow. Due to the presence of a complex in-vivo-like vasculature, the here shown skin equivalent has the potential for skin grafting and represents a sophisticated in vitro model for dermatological research.}, language = {en} } @article{WallstabeBussemerGroeberBeckeretal.2020, author = {Wallstabe, Julia and Bussemer, Lydia and Groeber-Becker, Florian and Freund, Lukas and Alb, Mirian and Dragan, Mariola and Waaga-Gasser, Ana Maria and Jakubietz, Rafael and Kneitz, Hermann and Rosenwald, Andreas and Rebhan, Silke and Walles, Heike and Mielke, Stephan}, title = {Inflammation-Induced Tissue Damage Mimicking GvHD in Human Skin Models as Test Platform for Immunotherapeutics}, series = {ALTEX}, volume = {37}, journal = {ALTEX}, number = {3}, doi = {10.14573/altex.1907181}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229974}, pages = {429-440}, year = {2020}, abstract = {Due to the rapidly increasing development and use of cellular products, there is a rising demand for non-animal-based test platforms to predict, study and treat undesired immunity. Here, we generated human organotypic skin models from human biopsies by isolating and expanding keratinocytes, fibroblasts and microvascular endothelial cells and seeding these components on a collagen matrix or a biological vascularized scaffold matrix in a bioreactor. We then were able to induce inflammation-mediated tissue damage by adding pre-stimulated, mismatched allogeneic lymphocytes and/or inflammatory cytokine-containing supernatants histomorphologically mimicking severe graft versus host disease (GvHD) of the skin. This could be prevented by the addition of immunosuppressants to the models. Consequently, these models harbor a promising potential to serve as a test platform for the prediction, prevention and treatment of GvHD. They also allow functional studies of immune effectors and suppressors including but not limited to allodepleted lymphocytes, gamma-delta T cells, regulatory T cells and mesenchymal stromal cells, which would otherwise be limited to animal models. Thus, the current test platform, developed with the limitation that no professional antigen presenting cells are in place, could greatly reduce animal testing for investigation of novel immune therapies.}, language = {en} } @article{LotzSchmidRossietal.2016, author = {Lotz, Christian and Schmid, Freia F. and Rossi, Angela and Kurdyn, Szymon and Kampik, Daniel and De Wever, Bart and Walles, Heike and Groeber, Florian K.}, title = {Alternative Methods for the Replacement of Eye Irritation Testing}, series = {ALTEX - Alternatives to Animal Experimentation}, volume = {33}, journal = {ALTEX - Alternatives to Animal Experimentation}, number = {1}, doi = {10.14573/altex.1508241}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164444}, pages = {55-67}, year = {2016}, abstract = {In the last decades significant regulatory attempts were made to replace, refine and reduce animal testing to assess the risk of consumer products for the human eye. As the original in vivo Draize eye test is criticized for limited predictivity, costs and ethical issues, several animal-free test methods have been developed to categorize substances according to the global harmonized system (GHS) for eye irritation. This review summarizes the progress of alternative test methods for the assessment of eye irritation. Based on the corneal anatomy and current knowledge of the mechanisms causing eye irritation, different ex vivo and in vitro methods will be presented and discussed with regard to possible limitations and status of regulatory acceptance. In addition to established in vitro models, this review will also highlight emerging, full thickness cornea models that might be suited to predict all GHS categories.}, language = {en} } @article{TucaBernardellideMattosFunketal.2022, author = {Tuca, Alexandru-Cristian and Bernardelli de Mattos, Ives and Funk, Martin and Winter, Raimund and Palackic, Alen and Groeber-Becker, Florian and Kruse, Daniel and Kukla, Fabian and Lemarchand, Thomas and Kamolz, Lars-Peter}, title = {Orchestrating the dermal/epidermal tissue ratio during wound healing by controlling the moisture content}, series = {Biomedicines}, volume = {10}, journal = {Biomedicines}, number = {6}, issn = {2227-9059}, doi = {10.3390/biomedicines10061286}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275115}, year = {2022}, abstract = {A balanced and moist wound environment and surface increases the effect of various growth factors, cytokines, and chemokines, stimulating cell growth and wound healing. Considering this fact, we tested in vitro and in vivo water evaporation rates from the cellulose dressing epicite\(^{hydro}\) when combined with different secondary dressings as well as the resulting wound healing efficacy in a porcine donor site model. The aim of this study was to evaluate how the different rates of water evaporation affected wound healing efficacy. To this end, epicite\(^{hydro}\) primary dressing, in combination with different secondary dressing materials (cotton gauze, JELONET\(^◊\), AQUACEL\(^®\) Extra\(^™\), and OPSITE\(^◊\) Flexifix), was placed on 3 × 3 cm-sized dermatome wounds with a depth of 1.2 mm on the flanks of domestic pigs. The healing process was analyzed histologically and quantified by morphometry. High water evaporation rates by using the correct secondary dressing, such as cotton gauze, favored a better re-epithelialization in comparison with the low water evaporation resulting from an occlusive secondary dressing, which favored the formation of a new and intact dermal tissue that nearly fully replaced all the dermis that was removed during wounding. This newly available evidence may be of great benefit to clinical wound management.}, language = {en} } @article{WeigelMalkmusWeigeletal.2022, author = {Weigel, Tobias and Malkmus, Christoph and Weigel, Verena and Wußmann, Maximiliane and Berger, Constantin and Brennecke, Julian and Groeber-Becker, Florian and Hansmann, Jan}, title = {Fully Synthetic 3D Fibrous Scaffolds for Stromal Tissues—Replacement of Animal-Derived Scaffold Materials Demonstrated by Multilayered Skin}, series = {Advanced Materials}, volume = {34}, journal = {Advanced Materials}, number = {10}, doi = {10.1002/adma.202106780}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276403}, year = {2022}, abstract = {The extracellular matrix (ECM) of soft tissues in vivo has remarkable biological and structural properties. Thereby, the ECM provides mechanical stability while it still can be rearranged via cellular remodeling during tissue maturation or healing processes. However, modern synthetic alternatives fail to provide these key features among basic properties. Synthetic matrices are usually completely degraded or are inert regarding cellular remodeling. Based on a refined electrospinning process, a method is developed to generate synthetic scaffolds with highly porous fibrous structures and enhanced fiber-to-fiber distances. Since this approach allows for cell migration, matrix remodeling, and ECM synthesis, the scaffold provides an ideal platform for the generation of soft tissue equivalents. Using this matrix, an electrospun-based multilayered skin equivalent composed of a stratified epidermis, a dermal compartment, and a subcutis is able to be generated without the use of animal matrix components. The extension of classical dense electrospun scaffolds with high porosities and motile fibers generates a fully synthetic and defined alternative to collagen-gel-based tissue models and is a promising system for the construction of tissue equivalents as in vitro models or in vivo implants.}, language = {en} } @article{KarlWussmannKressetal.2019, author = {Karl, Franziska and Wußmann, Maximiliane and Kreß, Luisa and Malzacher, Tobias and Fey, Phillip and Groeber-Becker, Florian and {\"U}{\c{c}}eyler, Nurcan}, title = {Patient-derived in vitro skin models for investigation of small fiber pathology}, series = {Annals of Clinical and Translational Neurology}, volume = {6}, journal = {Annals of Clinical and Translational Neurology}, number = {9}, doi = {10.1002/acn3.50871}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201649}, pages = {1797-1806}, year = {2019}, abstract = {Objective To establish individually expandable primary fibroblast and keratinocyte cultures from 3-mm skin punch biopsies for patient-derived in vitro skin models to investigate of small fiber pathology. Methods We obtained 6-mm skin punch biopsies from the calf of two patients with small fiber neuropathy (SFN) and two healthy controls. One half (3 mm) was used for diagnostic intraepidermal nerve fiber density (IENFD). From the second half, we isolated and cultured fibroblasts and keratinocytes. Cells were used to generate patient-derived full-thickness three-dimensional (3D) skin models containing a dermal and epidermal component. Cells and skin models were characterized morphologically, immunocyto- and -histochemically (vimentin, cytokeratin (CK)-10, CK 14, ki67, collagen1, and procollagen), and by electrical impedance. Results Distal IENFD was reduced in the SFN patients (2 fibers/mm each), while IENFD was normal in the controls (8 fibers/mm, 7 fibers/mm). Two-dimensional (2D) cultured skin cells showed normal morphology, adequate viability, and proliferation, and expressed cell-specific markers without relevant difference between SFN patient and healthy control. Using 2D cultured fibroblasts and keratinocytes, we obtained subject-derived 3D skin models. Morphology of the 3D model was analogous to the respective skin biopsy specimens. Both, the dermal and the epidermal layer carried cell-specific markers and showed a homogenous expression of extracellular matrix proteins. Interpretation Our protocol allows the generation of disease-specific 2D and 3D skin models, which can be used to investigate the cross-talk between skin cells and sensory neurons in small fiber pathology.}, language = {en} }