@article{LakovicPoethkeHovestadt2015, author = {Lakovic, Milica and Poethke, Hans-Joachim and Hovestadt, Thomas}, title = {Dispersal timing: Emigration of insects living in patchy environments}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {7}, doi = {10.1371/journal.pone.0128672}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126466}, pages = {e0128672}, year = {2015}, abstract = {Dispersal is a life-history trait affecting dynamics and persistence of populations; it evolves under various known selective pressures. Theoretical studies on dispersal typically assume 'natal dispersal', where individuals emigrate right after birth. But emigration may also occur during a later moment within a reproductive season ('breeding dispersal'). For example, some female butterflies first deposit eggs in their natal patch before migrating to other site(s) to continue egg-laying there. How breeding compared to natal dispersal influences the evolution of dispersal has not been explored. To close this gap we used an individual-based simulation approach to analyze (i) the evolution of timing of breeding dispersal in annual organisms, (ii) its influence on dispersal (compared to natal dispersal). Furthermore, we tested (iii) its performance in direct evolutionary contest with individuals following a natal dispersal strategy. Our results show that evolution should typically result in lower dispersal under breeding dispersal, especially when costs of dispersal are low and population size is small. By distributing offspring evenly across two patches, breeding dispersal allows reducing direct sibling competition in the next generation whereas natal dispersal can only reduce trans-generational kin competition by producing highly dispersive offspring in each generation. The added benefit of breeding dispersal is most prominent in patches with small population sizes. Finally, the evolutionary contests show that a breeding dispersal strategy would universally out-compete natal dispersal.}, language = {en} } @article{PoethkeHovestadtMitesser2003, author = {Poethke, Hans-Joachim and Hovestadt, Thomas and Mitesser, Oliver}, title = {Local extinction and the evolution of dispersal rates: Causes and correlations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47718}, year = {2003}, abstract = {We present the results of individual-based simulation experiments on the evolution of dispersal rates of organisms living in metapopulations. We find conflicting results regarding the relationship between local extinction rate and evolutionarily stable (ES) dispersal rate depending on which principal mechanism causes extinction: if extinction is caused by environmental catastrophes eradicating local populations, we observe a positive correlation between extinction and ES dispersal rate; if extinction is a consequence of stochastic local dynamics and environmental fluctuations, the correlation becomes ambiguous; and in cases where extinction is caused by dispersal mortality, a negative correlation between local extinction rate and ES dispersal rate emerges. We conclude that extinction rate, which both affects and is affected by dispersal rates, is not an ideal predictor for optimal dispersal rates.}, subject = {Ausbreitung}, language = {en} } @article{HeisswolfPoethkeObermaier2006, author = {Heisswolf, Annette and Poethke, Hans-Joachim and Obermaier, Elisabeth}, title = {Multitrophic influences on oviposition site selection in a specialized leaf beetle at multiple spatial scales}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47738}, year = {2006}, abstract = {Egg distribution in herbivorous beetles can be affected by bottom-up (host plant), and by top-down factors (parasitoids and predators), as well as by other habitat parameters. The importance of bottom-up and top-down effects may change with spatial scale. In this study, we investigated the influence of host plant factors and habitat structure on egg distribution in the leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae), a monophagous herbivore on Salvia pratensis L. (Lamiales: Lamiaceae), on four spatial scales: individual host plant, microhabitat, macrohabitat, and landscape. At the individual host plant scale we studied the correlation between egg clutch incidence and plant size and quality. On all other scales we analyzed the relationship between the egg clutch incidence of C. canaliculata and host plant percentage cover, host plant density, and the surrounding vegetation structure. Vegetation structure was examined as herbivores might escape egg parasitism by depositing their eggs on sites with vegetation factors unfavorable for host searching parasitoids. The probability that egg clutches of C. canaliculata were present increased with an increasing size, percentage cover, and density of the host plant on three of the four spatial scales: individual host plant, microhabitat, and macrohabitat. There was no correlation between vegetation structure and egg clutch occurrence or parasitism on any spatial scale. A high percentage of egg clutches (38-56\%) was parasitized by Foersterella reptans Nees (Hymenoptera: Tetracampidae), the only egg parasitoid, but there was no relationship between egg parasitism and the spatial distribution of egg clutches of C. canaliculata on any of the spatial scales investigated. However, we also discuss results from a further study, which revealed top-down effects on the larval stage.}, subject = {Eiablage}, language = {en} } @article{HeisswolfObermaierPoethke2005, author = {Heisswolf, Annette and Obermaier, Elisabeth and Poethke, Hans-Joachim}, title = {Selection of large host plants for oviposition by a monophagous leaf beetle: nutritional quality or enemy-free space?}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47728}, year = {2005}, abstract = {1. Oviposition site selection is crucial for the reproductive success of herbivorous insects. According to the preference-performance hypothesis, females should oviposit on host plants that enhance the performance of their offspring. More specifically, the plant vigour hypothesis predicts that females should prefer large and vigorously growing host plants for oviposition and that larvae should perform best on these plants. 2. The present study examined whether females of the monophagous leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae) prefer to oviposit on large host plant individuals of the meadow clary and whether large host plants are of higher nutritional quality than small host plants. Subsequently, it was tested whether the female preference correlates with offspring performance and survival. 3. In the field, females preferred large host plant individuals for oviposition and host plant quality, i.e. leaf nitrogen content, was significantly higher in leaves of large than of small host plants. 4. In the laboratory, larval development time was shorter on leaves of large host plant individuals than on small host plant individuals, but this could not be shown in the field. 5. However, a predator-exclusion experiment in the field resulted in a higher survival of larvae on large host plants than on small host plants when all predators had free access to the plants. On caged host plants there was no difference in survival of larvae between plant size categories. 6. It is concluded that females of C. canaliculata select oviposition sites that enhance both performance and survival of their offspring, which meets the predictions of the plant vigour hypothesis.}, subject = {Insekten}, language = {en} } @article{HeisswolfReichmannPoethkeetal.2009, author = {Heisswolf, Annette and Reichmann, Stefanie and Poethke, Hans-Joachim and Schr{\"o}der, Boris and Obermaier, Elisabeth}, title = {Habitat quality matters for the distribution of an endangered leaf beetle and its egg parasitoid in a fragmented landscape}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47740}, year = {2009}, abstract = {Fragmentation, deterioration, and loss of habitat patches threaten the survival of many insect species. Depending on their trophic level, species may be differently affected by these factors. However, studies investigating more than one trophic level on a landscape scale are still rare. In the present study we analyzed the effects of habitat size, isolation, and quality for the occurrence and population density of the endangered leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae) and its egg parasitoid, the hymenopteran wasp Foersterella reptans Nees (Hymenoptera: Tetracampidae). C. canaliculata is strictly monophagous on meadow sage (Salvia pratensis), while F. reptans can also parasitize other hosts. Both size and isolation of habitat patches strongly determined the occurrence of the beetle. However, population density increased to a much greater extent with increasing host plant density ( = habitat quality) than with habitat size. The occurrence probability of the egg parasitoid increased with increasing population density of C. canaliculata. In conclusion, although maintaining large, well-connected patches with high host plant density is surely the major conservation goal for the specialized herbivore C. canaliculata, also small patches with high host plant densities can support viable populations and should thus be conserved. The less specialized parasitoid F. reptans is more likely to be found on patches with high beetle density, while patch size and isolation seem to be less important.}, subject = {Fragmentierung}, language = {en} } @article{BonteHovestadtPoethke2008, author = {Bonte, Dries and Hovestadt, Thomas and Poethke, Hans-Joachim}, title = {Male-killing endosymbionts: influence of environmental conditions on persistance of host metapopulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-45344}, year = {2008}, abstract = {Background: Male killing endosymbionts manipulate their arthropod host reproduction by only allowing female embryos to develop into infected females and killing all male offspring. Because of the reproductive manipulation, we expect them to have an effect on the evolution of host dispersal rates. In addition, male killing endosymbionts are expected to approach fixation when fitness of infected individuals is larger than that of uninfected ones and when transmission from mother to offspring is nearly perfect. They then vanish as the host population crashes. High observed infection rates and among-population variation in natural systems can consequently not be explained if defense mechanisms are absent and when transmission efficiency is perfect. Results: By simulating the host-endosymbiont dynamics in an individual-based metapopulation model we show that male killing endosymbionts increase host dispersal rates. No fitness compensations were built into the model for male killing endosymbionts, but they spread as a group beneficial trait. Host and parasite populations face extinction under panmictic conditions, i.e. conditions that favor the evolution of high dispersal in hosts. On the other hand, deterministic 'curing' (only parasite goes extinct) can occur under conditions of low dispersal, e.g. under low environmental stochasticity and high dispersal mortality. However, high and stable infection rates can be maintained in metapopulations over a considerable spectrum of conditions favoring intermediate levels of dispersal in the host. Conclusion: Male killing endosymbionts without explicit fitness compensation spread as a group selected trait into a metapopulation. Emergent feedbacks through increased evolutionary stable dispersal rates provide an alternative explanation for both, the high male-killing endosymbiont infection rates and the high among-population variation in local infection rates reported for some natural systems.}, subject = {Metapopulation}, language = {en} } @article{BonteHovestadtPoethke2009, author = {Bonte, Dries and Hovestadt, Thomas and Poethke, Hans-Joachim}, title = {Evolution of dispersal polymorphism and local adaptation of dispersal distance in spatially structured landscapes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47856}, year = {2009}, abstract = {Many organisms show polymorphism in dispersal distance strategies. This variation is particularly ecological relevant if it encompasses a functional separation of short- (SDD) and long-distance dispersal (LDD). It remains, however, an open question whether both parts of the dispersal kernel are similarly affected by landscape related selection pressures. We implemented an individual-based model to analyze the evolution of dispersal traits in fractal landscapes that vary in the proportion of habitat and its spatial configuration. Individuals are parthenogenetic with dispersal distance determined by two alleles on each individual's genome: one allele coding for the probability of global dispersal and one allele coding for the variance of a Gaussian local dispersal with mean value zero. Simulations show that mean distances of local dispersal and the probability of global dispersal, increase with increasing habitat availability, but that changes in the habitat's spatial autocorrelation impose opposing selective pressure: local dispersal distances decrease and global dispersal probabilities increase with decreasing spatial autocorrelation of the available habitat. Local adaptation of local dispersal distance emerges in landscapes with less than 70\% of clumped habitat. These results demonstrate that long and short distance dispersal evolve separately according to different properties of the landscape. The landscape structure may consequently largely affect the evolution of dispersal distance strategies and the level of dispersal polymorphism.}, language = {en} } @article{MitesserWeisselStrohmetal.2007, author = {Mitesser, Oliver and Weissel, Norbert and Strohm, Erhard and Poethke, Hans-Joachim}, title = {Adaptive dynamic resource allocation in annual eusocial insects: Environmental variation will not necessarily promote graded control}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-45412}, year = {2007}, abstract = {Background: According to the classical model of Macevicz and Oster, annual eusocial insects should show a clear dichotomous "bang-bang" strategy of resource allocation; colony fitness is maximised when a period of pure colony growth (exclusive production of workers) is followed by a single reproductive period characterised by the exclusive production of sexuals. However, in several species graded investment strategies with a simultaneous production of workers and sexuals have been observed. Such deviations from the "bang-bang" strategy are usually interpreted as an adaptive (bet-hedging) response to environmental fluctuations such as variation in season length or food availability. To generate predictions about the optimal investment pattern of insect colonies in fluctuating environments, we slightly modified Macevicz and Oster's classical model of annual colony dynamics and used a dynamic programming approach nested into a recurrence procedure for the solution of the stochastic optimal control problem. Results: 1) The optimal switching time between pure colony growth and the exclusive production of sexuals decreases with increasing environmental variance. 2) Yet, for reasonable levels of environmental fluctuations no deviation from the typical bang-bang strategy is predicted. 3) Model calculations for the halictid bee Lasioglossum malachurum reveal that bet-hedging is not likely to be the reason for the graded allocation into sexuals versus workers observed in this species. 4) When environmental variance reaches a critical level our model predicts an abrupt change from dichotomous behaviour to graded allocation strategies, but the transition between colony growth and production of sexuals is not necessarily monotonic. Both, the critical level of environmental variance as well as the characteristic pattern of resource allocation strongly depend on the type of function used to describe environmental fluctuations. Conclusion: Up to now bet-hedging as an evolutionary response to variation in season length has been the main argument to explain field observations of graded resource allocation in annual eusocial insect species. However, our model shows that the effect of moderate fluctuations of environmental conditions does not select for deviation from the classical bang-bang strategy and that the evolution of graded allocation strategies can be triggered only by extreme fluctuations. Detailed quantitative observations on resource allocation in eusocial insects are needed to analyse the relevance of alternative explanations, e.g. logistic colony growth or reproductive conflict between queen and workers, for the evolution of graded allocation strategies.}, subject = {Insekten}, language = {en} }