@article{MuellerSienerthDietzHoltzetal.2011, author = {M{\"u}ller-Sienerth, Nicole and Dietz, Lena and Holtz, Philipp and Kapp, Markus and Grigoleit, G{\"o}tz Ulrich and Schmuck, Carsten and Wajant, Harald and Siegmund, Daniela}, title = {SMAC Mimetic BV6 Induces Cell Death in Monocytes and Maturation of Monocyte-Derived Dendritic Cells}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0021556}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142415}, pages = {e21556}, year = {2011}, abstract = {Background: Compounds mimicking the inhibitory effect of SMAC / DIABLO on X-linked inhibitor of apoptosis (XIAP) have been developed with the aim to achieve sensitization for apoptosis of tumor cells resistant due to deregulated XIAP expression. It turned out that SMAC mimetics also have complex effects on the NF kappa B system and TNF signaling. In view of the overwhelming importance of the NF kappa B transcription factors in the immune system, we analyzed here the effects of the SMAC mimetic BV6 on immune cells. Principal Findings: BV6 induced apoptotic and necrotic cell death in monocytes while T-cells, dendritic cells and macrophages were largely protected against BV6-induced cell death. In immature dendritic cells BV6 treatment resulted in moderate activation of the classical NF kappa B pathway, but it also diminished the stronger NF kappa B-inducing effect of TNF and CD40L. Despite its inhibitory effect on TNF- and CD40L signaling, BV6 was able to trigger maturation of immature DCs as indicated by upregulation of CD83, CD86 and IL12. Significance: The demonstrated effects of SMAC mimetics on immune cells may complicate the development of tumor therapeutic concepts based on these compounds but also arise the possibility to exploit them for the development of immune stimulatory therapies.}, language = {en} } @article{RauertWunderlichSiegmundMaieretal.2013, author = {Rauert-Wunderlich, Hilka and Siegmund, Daniela and Maier, Eduard and Giner, Tina and Bargou, Ralf C. and Wajant, Harald and St{\"u}hmer, Thorsten}, title = {The IKK Inhibitor Bay 11-7082 Induces Cell Death Independent from Inhibition of Activation of NF kappa B Transcription Factors}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0059292}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130140}, pages = {e59292}, year = {2013}, abstract = {Multiple myeloma (MM) displays an NFκB activity-related gene expression signature and about 20\% of primary MM samples harbor genetic alterations conducive to intrinsic NFκB signaling activation. The relevance of blocking the classical versus the alternative NFκB signaling pathway and the molecular execution mechanisms involved, however, are still poorly understood. Here, we comparatively tested NFκB activity abrogation through TPCA-1 (an IKK2 inhibitor), BAY 11-7082 (an IKK inhibitor poorly selective for IKK1 and IKK2), and MLN4924 (an NEDD8 activating enzyme (NAE)-inhibitor), and analyzed their anti-MM activity. Whereas TPCA-1 interfered selectively with activation of the classical NFκB pathway, the other two compounds inhibited classical and alternative NFκB signaling without significant discrimination. Noteworthy, whereas TPCA-1 and MLN4924 elicited rather mild anti-MM effects with slight to moderate cell death induction after 1 day BAY 11-7082 was uniformly highly toxic to MM cell lines and primary MM cells. Treatment with BAY 11-7082 induced rapid cell swelling and its initial effects were blocked by necrostatin-1 or the ROS scavenger BHA, but a lasting protective effect was not achieved even with additional blockade of caspases. Because MLN4924 inhibits the alternative NFκB pathway downstream of IKK1 at the level of p100 processing, the quite discordant effects between MLN4924 and BAY 11-7082 must thus be due to blockade of IKK1-mediated NFκB-independent necrosis-inhibitory functions or represent an off-target effect of BAY 11-7082. In accordance with the latter, we further observed that concomitant knockdown of IKK1 and IKK2 did not have any major short-term adverse effect on the viability of MM cells.}, language = {en} } @article{BrunekreeftStrohmGoodenetal.2014, author = {Brunekreeft, Kim L. and Strohm, Corinna and Gooden, Marloes J. and Rybczynska, Anna A. and Nijman, Hans W. and Grigoleit, G{\"o}tz U. and Helfrich, Wijnand and Bremer, Edwin and Siegmund, Daniela and Wajant, Harald and de Bruyn, Marco}, title = {Targeted delivery of CD40L promotes restricted activation of antigen-presenting cells and induction of cancer cell death}, series = {Molecular Cancer}, volume = {13}, journal = {Molecular Cancer}, number = {85}, issn = {1476-4598}, doi = {10.1186/1476-4598-13-85}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116682}, year = {2014}, abstract = {Background: Stimulation of CD40 can augment anti-cancer T cell immune responses by triggering effective activation and maturation of antigen-presenting cells (APCs). Although CD40 agonists have clinical activity in humans, the associated systemic activation of the immune system triggers dose-limiting side-effects. Methods: To increase the tumor selectivity of CD40 agonist-based therapies, we developed an approach in which soluble trimeric CD40L (sCD40L) is genetically fused to tumor targeting antibody fragments, yielding scFv: CD40L fusion proteins. We hypothesized that scFv: CD40L fusion proteins would have reduced CD40 agonist activity similar to sCD40L but will be converted to a highly agonistic membrane CD40L-like form of CD40L upon anchoring to cell surface exposed antigen via the scFv domain. Results: Targeted delivery of CD40L to the carcinoma marker EpCAM on carcinoma cells induced dose-dependent paracrine maturation of DCs similar to 20-fold more effective than a non-targeted control scFv: CD40L fusion protein. Similarly, targeted delivery of CD40L to the B cell leukemia marker CD20 induced effective paracrine maturation of DCs. Of note, the CD20-selective delivery of CD40L also triggered loss of cell viability in certain B cell leukemic cell lines as a result of CD20-induced apoptosis. Conclusions: Targeted delivery of CD40L to cancer cells is a promising strategy that may help to trigger cancer-localized activation of CD40 and can be modified to exert additional anti-cancer activity via the targeting domain.}, language = {en} } @article{SiegmundWagnerWajant2022, author = {Siegmund, Daniela and Wagner, Jennifer and Wajant, Harald}, title = {TNF receptor associated factor 2 (TRAF2) signaling in cancer}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {16}, issn = {2072-6694}, doi = {10.3390/cancers14164055}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286073}, year = {2022}, abstract = {Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) has been originally identified as a protein interacting with TNF receptor 2 (TNFR2) but also binds to several other receptors of the TNF receptor superfamily (TNFRSF). TRAF2, often in concert with other members of the TRAF protein family, is involved in the activation of the classical NFκB pathway and the stimulation of various mitogen-activated protein (MAP) kinase cascades by TNFRSF receptors (TNFRs), but is also required to inhibit the alternative NFκB pathway. TRAF2 has also been implicated in endoplasmic reticulum (ER) stress signaling, the regulation of autophagy, and the control of cell death programs. TRAF2 fulfills its functions by acting as a scaffold, bringing together the E3 ligase cellular inhibitor of apoptosis-1 (cIAP1) and cIAP2 with their substrates and various regulatory proteins, e.g., deubiquitinases. Furthermore, TRAF2 can act as an E3 ligase by help of its N-terminal really interesting new gene (RING) domain. The finding that TRAF2 (but also several other members of the TRAF family) interacts with the latent membrane protein 1 (LMP1) oncogene of the Epstein-Barr virus (EBV) indicated early on that TRAF2 could play a role in the oncogenesis of B-cell malignancies and EBV-associated non-keratinizing nasopharyngeal carcinoma (NPC). TRAF2 can also act as an oncogene in solid tumors, e.g., in colon cancer by promoting Wnt/β-catenin signaling. Moreover, tumor cell-expressed TRAF2 has been identified as a major factor-limiting cancer cell killing by cytotoxic T-cells after immune checkpoint blockade. However, TRAF2 can also be context-dependent as a tumor suppressor, presumably by virtue of its inhibitory effect on the alternative NFκB pathway. For example, inactivating mutations of TRAF2 have been associated with tumor development, e.g., in multiple myeloma and mantle cell lymphoma. In this review, we summarize the various TRAF2-related signaling pathways and their relevance for the oncogenic and tumor suppressive activities of TRAF2. Particularly, we discuss currently emerging concepts to target TRAF2 for therapeutic purposes.}, language = {en} }