@article{JochmannElkenaniMohamedetal.2019, author = {Jochmann, Svenja and Elkenani, Manar and Mohamed, Belal A. and Buchholz, Eric and Lbik, Dawid and Binder, Lutz and Lorenz, Kristina and Shah, Ajay M. and Hasenfuß, Gerd and Toischer, Karl and Schnelle, Moritz}, title = {Assessing the role of extracellular signal-regulated kinases 1 and 2 in volume overload-induced cardiac remodelling}, series = {ESC Heart Failure}, volume = {6}, journal = {ESC Heart Failure}, number = {5}, doi = {10.1002/ehf2.12497}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212735}, pages = {1015 -- 1026}, year = {2019}, abstract = {Aims Volume overload (VO) and pressure overload (PO) induce differential cardiac remodelling responses including distinct signalling pathways. Extracellular signal-regulated kinases 1 and 2 (ERK1/2), key signalling components in the mitogen-activated protein kinase (MAPK) pathways, modulate cardiac remodelling during pressure overload (PO). This study aimed to assess their role in VO-induced cardiac remodelling as this was unknown. Methods and results Aortocaval fistula (Shunt) surgery was performed in mice to induce cardiac VO. Two weeks of Shunt caused a significant reduction of cardiac ERK1/2 activation in wild type (WT) mice as indicated by decreased phosphorylation of the TEY (Thr-Glu-Tyr) motif (-28\% as compared with Sham controls, P < 0.05). Phosphorylation of other MAPKs was unaffected. For further assessment, transgenic mice with cardiomyocyte-specific ERK2 overexpression (ERK2tg) were studied. At baseline, cardiac ERK1/2 phosphorylation in ERK2tg mice remained unchanged compared with WT littermates, and no overt cardiac phenotype was observed; however, cardiac expression of the atrial natriuretic peptide was increased on messenger RNA (3.6-fold, P < 0.05) and protein level (3.1-fold, P < 0.05). Following Shunt, left ventricular dilation and hypertrophy were similar in ERK2tg mice and WT littermates. Left ventricular function was maintained, and changes in gene expression indicated reactivation of the foetal gene program in both genotypes. No differences in cardiac fibrosis and kinase activation was found amongst all experimental groups, whereas apoptosis was similarly increased through Shunt in ERK2tg and WT mice. Conclusions VO-induced eccentric hypertrophy is associated with reduced cardiac ERK1/2 activation in vivo. Cardiomyocyte-specific overexpression of ERK2, however, does not alter cardiac remodelling during VO. Future studies need to define the pathophysiological relevance of decreased ERK1/2 signalling during VO.}, language = {en} } @article{HartmannKnierimMaureretal.2023, author = {Hartmann, Nico and Knierim, Maria and Maurer, Wiebke and Dybkova, Nataliya and Hasenfuß, Gerd and Sossalla, Samuel and Streckfuss-B{\"o}meke, Katrin}, title = {Molecular and functional relevance of Na\(_V\)1.8-induced atrial arrhythmogenic triggers in a human SCN10A knock-out stem cell model}, series = {International Journal of Molecular Sciences}, volume = {24}, journal = {International Journal of Molecular Sciences}, number = {12}, issn = {1422-0067}, doi = {10.3390/ijms241210189}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-362708}, year = {2023}, abstract = {In heart failure and atrial fibrillation, a persistent Na\(^+\) current (I\(_{NaL}\)) exerts detrimental effects on cellular electrophysiology and can induce arrhythmias. We have recently shown that Na\(_V\)1.8 contributes to arrhythmogenesis by inducing a I\(_{NaL}\). Genome-wide association studies indicate that mutations in the SCN10A gene (Na\(_V\)1.8) are associated with increased risk for arrhythmias, Brugada syndrome, and sudden cardiac death. However, the mediation of these Na\(_V\)1.8-related effects, whether through cardiac ganglia or cardiomyocytes, is still a subject of controversial discussion. We used CRISPR/Cas9 technology to generate homozygous atrial SCN10A-KO-iPSC-CMs. Ruptured-patch whole-cell patch-clamp was used to measure the I\(_{NaL}\) and action potential duration. Ca\(^{2+}\) measurements (Fluo 4-AM) were performed to analyze proarrhythmogenic diastolic SR Ca\(^{2+}\) leak. The I\(_{NaL}\) was significantly reduced in atrial SCN10A KO CMs as well as after specific pharmacological inhibition of Na\(_V\)1.8. No effects on atrial APD\(_{90}\) were detected in any groups. Both SCN10A KO and specific blockers of Na\(_V\)1.8 led to decreased Ca\(^{2+}\) spark frequency and a significant reduction of arrhythmogenic Ca\(^{2+}\) waves. Our experiments demonstrate that Na\(_V\)1.8 contributes to I\(_{NaL}\) formation in human atrial CMs and that Na\(_V\)1.8 inhibition modulates proarrhythmogenic triggers in human atrial CMs and therefore Na\(_V\)1.8 could be a new target for antiarrhythmic strategies.}, language = {en} }