@article{SchmittTatschVollhardtetal.2022, author = {Schmitt, Andrea and Tatsch, Laura and Vollhardt, Alisa and Schneider-Axmann, Thomas and Raabe, Florian J. and Roell, Lukas and Heinsen, Helmut and Hof, Patrick R. and Falkai, Peter and Schmitz, Christoph}, title = {Decreased oligodendrocyte number in hippocampal subfield CA4 in schizophrenia: a replication study}, series = {Cells}, volume = {11}, journal = {Cells}, number = {20}, issn = {2073-4409}, doi = {10.3390/cells11203242}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290360}, year = {2022}, abstract = {Hippocampus-related cognitive deficits in working and verbal memory are frequent in schizophrenia, and hippocampal volume loss, particularly in the cornu ammonis (CA) subregions, was shown by magnetic resonance imaging studies. However, the underlying cellular alterations remain elusive. By using unbiased design-based stereology, we reported a reduction in oligodendrocyte number in CA4 in schizophrenia and of granular neurons in the dentate gyrus (DG). Here, we aimed to replicate these findings in an independent sample. We used a stereological approach to investigate the numbers and densities of neurons, oligodendrocytes, and astrocytes in CA4 and of granular neurons in the DG of left and right hemispheres in 11 brains from men with schizophrenia and 11 brains from age- and sex-matched healthy controls. In schizophrenia, a decreased number and density of oligodendrocytes was detected in the left and right CA4, whereas mean volumes of CA4 and the DG and the numbers and density of neurons, astrocytes, and granular neurons were not different in patients and controls, even after adjustment of variables because of positive correlations with postmortem interval and age. Our results replicate the previously described decrease in oligodendrocytes bilaterally in CA4 in schizophrenia and point to a deficit in oligodendrocyte maturation or a loss of mature oligodendrocytes. These changes result in impaired myelination and neuronal decoupling, both of which are linked to altered functional connectivity and subsequent cognitive dysfunction in schizophrenia.}, language = {en} } @article{BohnertTrellaPreissetal.2022, author = {Bohnert, Simone and Trella, Stefanie and Preiß, Ulrich and Heinsen, Helmut and Bohnert, Michael and Zwirner, Johann and Tremblay, Marie-{\`E}ve and Monoranu, Camelia-Maria and Ondruschka, Benjamin}, title = {Density of TMEM119-positive microglial cells in postmortem cerebrospinal fluid as a surrogate marker for assessing complex neuropathological processes in the CNS}, series = {International Journal of Legal Medicine}, volume = {136}, journal = {International Journal of Legal Medicine}, number = {6}, doi = {10.1007/s00414-022-02863-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325009}, pages = {1841-1850}, year = {2022}, abstract = {Routine coronal paraffin-sections through the dorsal frontal and parieto-occipital cortex of a total of sixty cases with divergent causes of death were immunohistochemically (IHC) stained with an antibody against TMEM119. Samples of cerebrospinal fluid (CSF) of the same cases were collected by suboccipital needle-puncture, subjected to centrifugation and processed as cytospin preparations stained with TMEM119. Both, cytospin preparations and sections were subjected to computer-assisted density measurements. The density of microglial TMEM119-positive cortical profiles correlated with that of cytospin results and with the density of TMEM119-positive microglial profiles in the medullary layer. There was no statistically significant correlation between the density of medullary TMEM119-positive profiles and the cytospin data. Cortical microglial cells were primarily encountered in supragranular layers I, II, and IIIa and in infragranular layers V and VI, the region of U-fibers and in circumscribed foci or spread in a diffuse manner and high density over the white matter. We have evidence that cortical microglia directly migrate into CSF without using the glympathic pathway. Microglia in the medullary layer shows a strong affinity to the adventitia of deep vessels in the myelin layer. Selected rapidly fatal cases including myocardial infarcts and drowning let us conclude that microglia in cortex and myelin layer can react rapidly and its reaction and migration is subject to pre-existing external and internal factors. Cytospin preparations proved to be a simple tool to analyze and assess complex changes in the CNS after rapid fatal damage. There is no statistically significant correlation between cytospin and postmortem interval. Therefore, the quantitative analyses of postmortem cytospins obviously reflect the neuropathology of the complete central nervous system. Cytospins provide forensic pathologists a rather simple and easy to perform method for the global assessment of CNS affliction.}, language = {en} }