@article{AlmanzarKleinSchmalzingetal.2016, author = {Almanzar, Giovanni and Klein, Matthias and Schmalzing, Marc and Hilligardt, Deborah and El Hajj, Nady and Kneitz, Hermann and Wild, Vanessa and Rosenwald, Andreas and Benoit, Sandrine and Hamm, Henning and Tony, Hans-Peter and Haaf, Thomas and Goebeler, Matthias and Prelog, Martina}, title = {Disease Manifestation and Inflammatory Activity as Modulators of Th17/Treg Balance and RORC/FoxP3 Methylation in Systemic Sclerosis}, series = {International Archives of Allergy and Immunology}, volume = {171}, journal = {International Archives of Allergy and Immunology}, number = {2}, issn = {1018-2438}, doi = {10.1159/000450949}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196577}, pages = {141-154}, year = {2016}, abstract = {Background: There is much evidence that T cells are strongly involved in the pathogenesis of localized and systemic forms of scleroderma (SSc). A dysbalance between FoxP3+ regulatory CD4+ T cells (Tregs) and inflammatory T-helper (Th) 17 cells has been suggested. Methods: The study aimed (1) to investigate the phenotypical and functional characteristics of Th17 and Tregs in SSc patients depending on disease manifestation (limited vs. diffuse cutaneous SSc, dcSSc) and activity, and (2) the transcriptional level and methylation status of Th17- and Treg-specific transcription factors. Results: There was a concurrent accumulation of circulating peripheral IL-17-producing CCR6+ Th cells and FoxP3+ Tregs in patients with dcSSc. At the transcriptional level, Th17- and Treg-associated transcription factors were elevated in SSc. A strong association with high circulating Th17 and Tregs was seen with early, active, and severe disease presentation. However, a diminished suppressive function on autologous lymphocytes was found in SSc-derived Tregs. Significant relative hypermethylation was seen at the gene level for RORC1 and RORC2 in SSc, particularly in patients with high inflammatory activity. Conclusions: Besides the high transcriptional activity of T cells, attributed to Treg or Th17 phenotype, in active SSc disease, Tregs may be insufficient to produce high amounts of IL-10 or to control proliferative activity of effector T cells in SSc. Our results suggest a high plasticity of Tregs strongly associated with the Th17 phenotype. Future directions may focus on enhancing Treg functions and stabilization of the Treg phenotype.}, language = {en} } @article{ThiemHesbacherKneitzetal.2019, author = {Thiem, Alexander and Hesbacher, Sonja and Kneitz, Hermann and di Primio, Teresa and Heppt, Markus V. and Hermanns, Heike M. and Goebeler, Matthias and Meierjohann, Svenja and Houben, Roland and Schrama, David}, title = {IFN-gamma-induced PD-L1 expression in melanoma depends on p53 expression}, series = {Journal of Experimental \& Clinical Cancer Research}, volume = {38}, journal = {Journal of Experimental \& Clinical Cancer Research}, doi = {10.1186/s13046-019-1403-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201016}, pages = {397}, year = {2019}, abstract = {Background Immune checkpoint inhibition and in particular anti-PD-1 immunotherapy have revolutionized the treatment of advanced melanoma. In this regard, higher tumoral PD-L1 protein (gene name: CD274) expression is associated with better clinical response and increased survival to anti-PD-1 therapy. Moreover, there is increasing evidence that tumor suppressor proteins are involved in immune regulation and are capable of modulating the expression of immune checkpoint proteins. Here, we determined the role of p53 protein (gene name: TP53) in the regulation of PD-L1 expression in melanoma. Methods We analyzed publicly available mRNA and protein expression data from the cancer genome/proteome atlas and performed immunohistochemistry on tumors with known TP53 status. Constitutive and IFN-ɣ-induced PD-L1 expression upon p53 knockdown in wildtype, TP53-mutated or JAK2-overexpressing melanoma cells or in cells, in which p53 was rendered transcriptionally inactive by CRISPR/Cas9, was determined by immunoblot or flow cytometry. Similarly, PD-L1 expression was investigated after overexpression of a transcriptionally-impaired p53 (L22Q, W23S) in TP53-wt or a TP53-knockout melanoma cell line. Immunoblot was applied to analyze the IFN-ɣ signaling pathway. Results For TP53-mutated tumors, an increased CD274 mRNA expression and a higher frequency of PD-L1 positivity was observed. Interestingly, positive correlations of IFNG mRNA and PD-L1 protein in both TP53-wt and -mutated samples and of p53 and PD-L1 protein suggest a non-transcriptional mode of action of p53. Indeed, cell line experiments revealed a diminished IFN-ɣ-induced PD-L1 expression upon p53 knockdown in both wildtype and TP53-mutated melanoma cells, which was not the case when p53 wildtype protein was rendered transcriptionally inactive or by ectopic expression of p53\(^{L22Q,W23S}\), a transcriptionally-impaired variant, in TP53-wt cells. Accordingly, expression of p53\(^{L22Q,W23S}\) in a TP53-knockout melanoma cell line boosted IFN-ɣ-induced PD-L1 expression. The impaired PD-L1-inducibility after p53 knockdown was associated with a reduced JAK2 expression in the cells and was almost abrogated by JAK2 overexpression. Conclusions While having only a small impact on basal PD-L1 expression, both wildtype and mutated p53 play an important positive role for IFN-ɣ-induced PD-L1 expression in melanoma cells by supporting JAK2 expression. Future studies should address, whether p53 expression levels might influence response to anti-PD-1 immunotherapy.}, language = {en} }