@phdthesis{Hofstetter2022, author = {Hofstetter, Julia Eva Ines}, title = {MYC shapes the composition of RNA polymerase II through direct recruitment of transcription elongation factors}, doi = {10.25972/OPUS-24035}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240358}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The transcription factor MYC is a onco-protein, found to be deregulated in many human cancers. High MYC levels correlate with an aggressive tumor outcome and poor survival rates. Despite MYC being discovered as an oncogene already in the 1970s, how MYC regulates transcription of its target genes, which are involved in cellular growth and proliferation, is not fully understood yet. In this study, the question how MYC influences factors interacting with the RNA polymerase II ensuring productive transcription of its target genes was addressed using quantitative mass spectrometry. By comparing the interactome of RNA polymerase II under varying MYC levels, several potential factors involved in transcriptional elongation were identified. Furthermore, the question which of those factors interact with MYC was answered by employing quantitative mass spectrometry of MYC itself. Thereby, the direct interaction of MYC with the transcription elongation factor SPT5, a subunit of the DRB-sensitivity inducing factor, was discovered and analyzed in greater detail. SPT5 was shown to be recruited to chromatin by MYC. In addition, the interaction site of MYC on SPT5 was narrowed down to its evolutionary conserved NGN-domain, which is the known binding site for SPT4, the earlier characterized second subunit of the DRB-sensitivity inducing factor. This finding suggests a model in which MYC and SPT4 compete for binding the NGN-domain of SPT5. Investigations of the SPT5-interacting region on MYC showed binding of SPT5 to MYC's N-terminus including MYC-boxes 0, I and II. In order to analyze proteins interacting specifically with the N-terminal region of MYC, a truncated MYC-mutant was used for quantitative mass spectrometric analysis uncovering reduced binding for several proteins including the well-known interactor TRRAP and TRRAP-associated complexes. Summarized, ...}, subject = {Transkription }, language = {en} } @article{TrifaultMamontovaCossaetal.2024, author = {Trifault, Barbara and Mamontova, Victoria and Cossa, Giacomo and Ganskih, Sabina and Wei, Yuanjie and Hofstetter, Julia and Bhandare, Pranjali and Baluapuri, Apoorva and Nieto, Blanca and Solvie, Daniel and Ade, Carsten P. and Gallant, Peter and Wolf, Elmar and Larsen, Dorthe H. and Munschauer, Mathias and Burger, Kaspar}, title = {Nucleolar detention of NONO shields DNA double-strand breaks from aberrant transcripts}, series = {Nucleic Acids Research}, volume = {52}, journal = {Nucleic Acids Research}, number = {6}, doi = {10.1093/nar/gkae022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350208}, pages = {3050-3068}, year = {2024}, abstract = {RNA-binding proteins emerge as effectors of the DNA damage response (DDR). The multifunctional non-POU domain-containing octamer-binding protein NONO/p54\(^{nrb}\) marks nuclear paraspeckles in unperturbed cells, but also undergoes re-localization to the nucleolus upon induction of DNA double-strand breaks (DSBs). However, NONO nucleolar re-localization is poorly understood. Here we show that the topoisomerase II inhibitor etoposide stimulates the production of RNA polymerase II-dependent, DNA damage-inducible antisense intergenic non-coding RNA (asincRNA) in human cancer cells. Such transcripts originate from distinct nucleolar intergenic spacer regions and form DNA-RNA hybrids to tether NONO to the nucleolus in an RNA recognition motif 1 domain-dependent manner. NONO occupancy at protein-coding gene promoters is reduced by etoposide, which attenuates pre-mRNA synthesis, enhances NONO binding to pre-mRNA transcripts and is accompanied by nucleolar detention of a subset of such transcripts. The depletion or mutation of NONO interferes with detention and prolongs DSB signalling. Together, we describe a nucleolar DDR pathway that shields NONO and aberrant transcripts from DSBs to promote DNA repair.}, language = {en} } @article{HofstetterOgunleyeKutschkeetal.2024, author = {Hofstetter, Julia and Ogunleye, Ayoola and Kutschke, Andr{\´e} and Buchholz, Lisa Marie and Wolf, Elmar and Raabe, Thomas and Gallant, Peter}, title = {Spt5 interacts genetically with Myc and is limiting for brain tumor growth in Drosophila}, series = {Life Science Alliance}, volume = {7}, journal = {Life Science Alliance}, number = {1}, issn = {2575-1077}, doi = {10.26508/lsa.202302130}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350197}, year = {2024}, abstract = {The transcription factor SPT5 physically interacts with MYC oncoproteins and is essential for efficient transcriptional activation of MYC targets in cultured cells. Here, we use Drosophila to address the relevance of this interaction in a living organism. Spt5 displays moderate synergy with Myc in fast proliferating young imaginal disc cells. During later development, Spt5-knockdown has no detectable consequences on its own, but strongly enhances eye defects caused by Myc overexpression. Similarly, Spt5-knockdown in larval type 2 neuroblasts has only mild effects on brain development and survival of control flies, but dramatically shrinks the volumes of experimentally induced neuroblast tumors and significantly extends the lifespan of tumor-bearing animals. This beneficial effect is still observed when Spt5 is knocked down systemically and after tumor initiation, highlighting SPT5 as a potential drug target in human oncology.}, language = {en} }