@article{RienschSwobodaLiketal.2021, author = {Riensch, Nicolas Alexander and Swoboda, Lukas and Lik, Artur and Krummenacher, Ivo and Braunschweig, Holger and Helten, Holger}, title = {Conjugated Bis(triarylboranes) with Disconnected Conjugation}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, volume = {647}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, number = {5}, doi = {10.1002/zaac.202000476}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258020}, pages = {421-424}, year = {2021}, abstract = {A series of methylene-bridged bis(triarylboranes) has been synthesized via two complementary routes using metal-free catalytic Si/B exchange condensation under mild conditions. The title compounds comprise two borane moieties that show effective internal π-conjugation involving the respective boron centers and the adjacent hetaryl groups. Conjugation between both borane units, however, is disrupted by the aliphatic linker. Cyclic voltammetry revealed minimal electronic communication between the boron centers, as evidenced by two closely spaced reduction processes. The UV-vis spectra showed bathochromic shifted absorption bands compared to related monoboranes, which is attributed to the methylene bridge. A further red-shift results upon introduction of methyl or SiMe\(_3\) groups at the terminal thiophene rings.}, language = {en} } @article{BachmannHelbigCrumbachetal.2022, author = {Bachmann, Jonas and Helbig, Andreas and Crumbach, Merian and Krummenacher, Ivo and Braunschweig, Holger and Helten, Holger}, title = {Fusion of Aza- and Oxadiborepins with Furans in a Reversible Ring-Opening Process Furnishes Versatile Building Blocks for Extended π-Conjugated Materials}, series = {Chemistry - A European Journal}, volume = {28}, journal = {Chemistry - A European Journal}, number = {63}, doi = {10.1002/chem.202202455}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293926}, year = {2022}, abstract = {A modular synthesis of both difurooxa- and difuroazadiborepins from a common precursor is demonstrated. Starting from 2,2′-bifuran, after protection of the positions 5 and 5' with bulky silyl groups, formation of the novel polycycles proceeds through opening of the furan rings to a dialkyne and subsequent re-cyclization in the borylation step. The resulting bifuran-fused diborepins show pronounced stability, highly planar tricyclic structures, and intense blue light emission. Deprotection and transformation into dibrominated building blocks that can be incorporated into π-extended materials can be performed in one step. Detailed DFT calculations provide information about the aromaticity of the constituent rings of this polycycle.}, language = {en} } @article{CrumbachBachmannFritzeetal.2021, author = {Crumbach, Merian and Bachmann, Jonas and Fritze, Lars and Helbig, Andreas and Krummenacher, Ivo and Braunschweig, Holger and Helten, Holger}, title = {Dithiophene-Fused Oxadiborepins and Azadiborepins: A New Class of Highly Fluorescent Heteroaromatics}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {17}, doi = {10.1002/anie.202100295}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238996}, pages = {9290 -- 9295}, year = {2021}, abstract = {Access to dithiophene-fused oxadiborepins and the first azadiborepins attained via a modular synthesis route are presented. The new compounds emit intense blue light, some of which demonstrate fluorescence quantum yields close to unity. Cyclic voltammetry (CV) revealed electrochemically reversible one-electron reduction processes. The weak aromatic character of the novel 1,2,7-azadiborepin ring is demonstrated with in-depth theoretical investigations using nucleus-independent chemical shift (NICS) scans and anisotropy of the induced current density (ACID) calculations.}, language = {en} } @article{SchorrSchopperRienschetal.2021, author = {Schorr, Fabian and Schopper, Nils and Riensch, Nicolas and Fantuzzi, Felipe and Neder, Marco and Dewhurst, Rian D. and Thiess, Thorsten and Br{\"u}ckner, Tobias and Hammond, Kai and Helten, Holger and Finze, Maik and Braunschweig, Holger}, title = {Controlled Synthesis of Oligomers Containing Main-Chain B(sp\(^{2}\))-B(sp\(^{2}\)) Bonds}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {64}, doi = {10.1002/chem.202103366}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257274}, pages = {16043-16048}, year = {2021}, abstract = {A number of novel alkynyl-functionalized diarylbis(dimethylamino)diboranes(4) are prepared by salt metathesis, and the appended alkynyl groups are subjected to hydroboration. Their reactions with monohydroboranes lead to discrete boryl-appended diborane(4) species, while dihydroboranes induce their catenation to oligomeric species, the first known examples of well-characterized macromolecular species with B-B bonds. The oligomeric species were found to comprise up to ten repeat units and are soluble in common organic solvents. Some of the oligomeric species have good air stability and all were characterized by NMR and vibrational spectroscopy and size-exclusion chromatography techniques.}, language = {en} } @article{AuerhammerArrowsmithBraunschweigetal.2017, author = {Auerhammer, Dominic and Arrowsmith, Merle and Braunschweig, Holger and Dewhurst, Rian D. and Jim{\´e}nez-Halla, J. Oscar C. and Kupfer, Thomas}, title = {Nucleophilic addition and substitution at coordinatively saturated boron by facile 1,2-hydrogen shuttling onto a carbene donor}, series = {Chemical Science}, volume = {8}, journal = {Chemical Science}, number = {10}, doi = {10.1039/c7sc03193a}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170255}, pages = {7066-7071}, year = {2017}, abstract = {The reaction of [(cAAC\(^{Me}\))BH\(_{3}\)] (cAAC\(^{Me}\) = 1-(2,6-iPr\(_{2}\)C\(_{6}\)H\(_{3}\))-3,3,5,5-tetramethylpyrrolidin-2-ylidene) with a range of organolithium compounds led to the exclusive formation of the corresponding (dihydro)organoborates, Li\(^{+}\)[(cAAC\(^{Me}\)H)BH\(_{2}\)R]- (R = sp\(^{3}\)-, sp\(^{2}\)-, or sp-hybridised organic substituent), by migration of one boron-bound hydrogen atom to the adjacent carbene carbon of the cAAC ligand. A subsequent deprotonation/salt metathesis reaction with Me3SiCl or spontaneous LiH elimination yielded the neutral cAAC-supported mono(organo)boranes, [(cAAC\(^{Me}\)H)BH\(_{2}\)R]- (R]. Similarly the reaction of [cAAC\(^{Me}\))BH\(_{3}\)] with a neutral donor base L resulted in adduct formation by shuttling one boron-bound hydrogen to the cAAC ligand, to generate [(cAAC\(^{Me}\)H)BH\(_{2}\)L], either irreversibly (L = cAAC\(^{Me}\)) or reversibly (L = pyridine). Variable-temperature NMR data and DFT calculations on [(cAAC\(^{Me}\)H)BH\(_{2}\)(cAAC\(^{Me}\))] show that the hydrogen on the former carbene carbon atom exchanges rapidly with the boron-bound hydrides.}, language = {en} } @article{BoehnkeBruecknerHermannetal.2018, author = {B{\"o}hnke, Julian and Br{\"u}ckner, Tobias and Hermann, Alexander and Gonz{\´a}lez-Belman, Oscar F. and Arrowsmith, Merle and Jim{\´e}nez-Halla, J. Oscar C. and Braunschweig, Holger}, title = {Single and double activation of acetone by isolobal B≡N and B≡B triple bonds}, series = {Chemical Science}, volume = {9}, journal = {Chemical Science}, doi = {10.1039/c8sc01249k}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164286}, pages = {5354-5359}, year = {2018}, abstract = {B≡N and B≡B triple bonds induce C-H activation of acetone to yield a (2-propenyloxy)aminoborane and an unsymmetrical 1-(2- propenyloxy)-2-hydrodiborene, respectively. DFT calculations showed that, despite their stark electronic differences, both the B≡N and B≡B triple bonds activate acetone via a similar coordination-deprotonation mechansim. In contrast, the reaction of acetone with a cAAC-supported diboracumulene yielded a unique 1,2,3-oxadiborole, which according to DFT calculations also proceeds via an unsymmetrical diborene, followed by intramolecular hydride migration and a second C-H activation of the enolate ligand.}, language = {en} } @article{BruecknerDewhurstDellermannetal.2019, author = {Br{\"u}ckner, Tobias and Dewhurst, Rian D. and Dellermann, Theresa and M{\"u}ller, Marcel and Braunschweig, Holger}, title = {Mild synthesis of diboryldiborenes by diboration of B-B triple bonds}, series = {Chemical Science}, volume = {10}, journal = {Chemical Science}, doi = {10.1039/C9SC02544H}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186306}, pages = {7375-7378}, year = {2019}, abstract = {A set of diboryldiborenes are prepared by the mild, catalyst-free, room-temperature diboration of the B-B triple bonds of doubly base-stabilized diborynes. Two of the product diboryldiborenes are found to be air- and water-stable in the solid state, an effect that is attributed to their high crystallinity and extreme insolubility in a wide range of solvents.}, language = {en} } @article{AnsellKostakisBraunschweigetal.2016, author = {Ansell, Melvyn B. and Kostakis, George E. and Braunschweig, Holger and Navarro, Oscar and Spencer, John}, title = {Synthesis of functionalized hydrazines: facile homogeneous (N-heterocyclic carbene)-palladium(0)-catalyzed diboration and silaboration of azobenzenes}, series = {Advanced Synthesis \& Catalysis}, volume = {358}, journal = {Advanced Synthesis \& Catalysis}, number = {23}, doi = {10.1002/adsc.201601106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186582}, pages = {3765-3769}, year = {2016}, abstract = {The bis(N-heterocyclic carbene)(diphenylacetylene)palladium complex Pd(ITMe)\(_2\)(PhCCPh)] (ITMe=1,3,4,5-tetramethylimidazol-2-ylidene) acts as a highly active pre-catalyst in the diboration and silaboration of azobenzenes to synthesize a series of novel functionalized hydrazines. The reactions proceed using commercially available diboranes and silaboranes under mild reaction conditions.}, language = {en} } @article{BraunschweigEwingGhoshetal.2016, author = {Braunschweig, Holger and Ewing, William C. and Ghosh, Sundargopal and Kramer, Thomas and Mattock, James D. and {\"O}streicher, Sebastian and Vargas, Alfredo and Werner, Christine}, title = {Trimetallaborides as starting points for the syntheses of large metal-rich molecular borides and clusters}, series = {Chemical Science}, volume = {7}, journal = {Chemical Science}, number = {1}, doi = {10.1039/c5sc03206g}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191511}, pages = {109-116}, year = {2016}, abstract = {Treatment of an anionic dimanganaborylene complex ([{Cp(CO)\(_2\)Mn}\(_2\)B]\(^-\)) with coinage metal cations stabilized by a very weakly coordinating Lewis base (SMe\(_2\)) led to the coordination of the incoming metal and subsequent displacement of dimethylsulfide in the formation of hexametalladiborides featuring planar four-membered M\(_2\)B\(_2\) cores (M = Cu, Au) comparable to transition metal clusters constructed around four-membered rings composed solely of coinage metals. The analogies between compounds consisting of B\(_2\)M\(_2\) units and M\(_4\) (M = Cu, Au) units speak to the often overlooked metalloid nature of boron. Treatment of one of these compounds (M = Cu) with a Lewis-basic metal fragment (Pt(PCy\(_3\))\(_2\)) led to the formation of a tetrametallaboride featuring two manganese, one copper and one platinum atom, all bound to boron in a geometry not yet seen for this kind of compound. Computational examination suggests that this geometry is the result of d\(^{10}\)-d\(^{10}\) dispersion interactions between the copper and platinum fragments.}, language = {en} } @article{BraunschweigKrummenacherMailaenderetal.2016, author = {Braunschweig, Holger and Krummenacher, Ivo and Mail{\"a}nder, Lisa and Pentecost, Leanne and Vargas, Alfredo}, title = {Formation of a stable radical by oxidation of a tetraorganoborate}, series = {Chemical Communications}, volume = {52}, journal = {Chemical Communications}, number = {43}, doi = {10.1039/c6cc02916g}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191321}, pages = {7005-7008}, year = {2016}, abstract = {Herein, we describe the selective formation of a stable neutral spiroborate radical by one-electron oxidation of the corresponding tetraorganoborate salt Li[B(C\(_4\)Ph\(_4\))\(_2\)], formally containing a tetrahedral borate centre and a s-cis-butadiene radical cation as the spin-bearing site. Spectroscopic and computational methods have been used to determine the spin distribution and the chromism observed in the solid state.}, language = {en} } @article{BraunschweigArnoldGruss2011, author = {Braunschweig, Holger and Arnold, Thomas and Gruss, Katrin}, title = {cyclo-Tri-mu-oxido-tris{[(eta 5,eta 5)-1,2-bis(cyclopentadienyl)-1,1,2,2-tetramethyldisilane]zirconium(IV)}: atrimeric disila-bridged oxidozirconocene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74737}, year = {2011}, abstract = {no abstract available}, subject = {Chemie}, language = {en} } @article{BraunschweigDewhurstSchwabetal.2010, author = {Braunschweig, Holger and Dewhurst, Rian D. and Schwab, Katrin and Wagner, Katharina}, title = {{N ',N ''-Bis[2,6-bis(1-methylethyl)phenyl]-N,N-dimethylguanidinato-kappa N-2 ',N ''}dibromidoborane}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67622}, year = {2010}, abstract = {In the molecular structure of the title compound, C27H40N3BBr2, the B atom is connected to two bromide substituents and a guanidinate scaffold, forming a four- membered ring. An aryl group is connected to each N atom in the ring that contains two isopropyl groups in positions 2 and 6.}, subject = {Anorganische Chemie}, language = {en} } @article{BraunschweigDamme2010, author = {Braunschweig, Holger and Damme, Alexander}, title = {1,2-Bis(dimethylamino)-1,2-bis(2,4,6-triisopropylphenyl)diborane(4)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67639}, year = {2010}, abstract = {In the molecular structure of the title compound, C34H58B2N2, each B atom of the diborane(4) is connected to one dimethylamino group and one Tip ligand (Tip = 2,4,6-triisopropylphenyl). These findings indicate that the increased steric demand of the Tip groups exerts influence solely on the B—B separation but not on the overall geometry of the title compound.}, subject = {Anorganische Chemie}, language = {en} } @article{ArnoldBraunschweigDamme2012, author = {Arnold, Nicole and Braunschweig, Holger and Damme, Alexander}, title = {Bis(μ-diisopropyl-phosphanido-\(κ^2\)P:P)bis-[hydrido(triisopropyl-phosphane-κP)platinum(II)]}, series = {Acta crystallographica. Section E, Structure reports online}, volume = {E68}, journal = {Acta crystallographica. Section E, Structure reports online}, doi = {http://dx.doi.org/10.1107/S1600536812022829}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123723}, pages = {m808}, year = {2012}, abstract = {In the centrosymmetric molecular structure of the title compound \([Pt_2(C_6H_{14}P)_2H_2)(C_9H_{21}P)_2]\), each \(Pt^{II}\) atom is bound on one side to a phosphane ligand \((PiPr_3)\) and a hydrido ligand. On the other side, it is bound to two phosphanide ligands \((μ-PiPr_2)\), which engage a bridging position between the two \(Pt^{II}\) atoms, forming a distorted square-planar structure motif. The PtPt distance is 3.6755(2){\AA}. A comparable molecular structure was observed for bis-(μ-di-tert-butyl-phosphanido)bis-[hydrido(triethyl-phosphane)platinum(II)] [Itazaki et al. (2004 ). Organometallics, 23, 1610-1621].}, language = {en} } @article{BraunschweigKramer2014, author = {Braunschweig, Holger and Kramer, T.}, title = {Crystal structure of μ-1κC:2(\(η^2\))-carbonyl-carbonyl-1κC-chlorido-2κCl-μ-chloridoborylene-1:2\(κ^2\) B:B-[1(\(η^5\))-pentamethylcyclopentadienyl](tricyclohexylphosphane-2κP)iron(II)platinum(II) benzene monosolvate}, volume = {70}, number = {11}, doi = {10.1107/S1600536814023381}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120120}, pages = {421-423}, year = {2014}, abstract = {In the mol­ecular structure of the dinuclear title compound \([η^5-(C_5(CH_3)_5)(CO)Fe{(μ-BCl)(μ-CO)}PtCl(P(C_6H_{11})_3)]·C_6H_6\), the two metal atoms, iron(II) and platinum(II), are bridged by one carbonyl (μ-CO) and one chlorido­borylene ligand (μ-BCl). The \(Pt^{II}\) atom is additionally bound to a chloride ligand situated trans to the bridging borylene, and a tri­cyclo­hexyl­phosphane ligand \((PCy_3)\) trans to the carbonyl ligand, forming a distorted square-planar structural motif at the \(Pt^{II}\) atom. The \(Fe_{II}\) atom is bound to a penta­methyl­cyclo­penta­dienyl ligand \([η^5-C_5(CH_3)_5]\) and one carbonyl ligand (CO), forming a piano-stool structure. Additionally, one benzene solvent mol­ecule is incorporated into the crystal structure, positioned staggered relative to the penta­methyl­cyclo­penta­dienyl ligand at the \(Fe^{II}\) atom, with a centroid-centroid separation of 3.630 (2) {\AA}.}, language = {en} } @article{StennettJayaramanBrueckneretal.2020, author = {Stennett, Tom E. and Jayaraman, Arumugam and Br{\"u}ckner, Tobias and Schneider, Lea and Braunschweig, Holger}, title = {Hydrophosphination of boron-boron multiple bonds}, series = {Chemical Science}, volume = {11}, journal = {Chemical Science}, doi = {10.1039/c9sc05908c}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240681}, pages = {1335-1341}, year = {2020}, abstract = {Five compounds containing boron-boron multiple bonds are shown to undergo hydrophosphination reactions with diphenylphosphine in the absence of a catalyst. With diborenes, the products obtained are highly dependent on the substitution pattern at the boron atoms, with both 1,1- and 1,2- hydrophosphinations observed. With a symmetrical diboryne, 1,2-hydrophosphination yields a hydro(phosphino)diborene. The different mechanistic pathways for the hydrophosphination of diborenes are rationalised with the aid of density functional theory calculations.}, language = {en} } @article{ArrowsmithBoehnkeBraunschweigetal.2016, author = {Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Celik, Mehmet and Dellermann, Theresa and Hammond, Kai}, title = {Uncatalyzed Hydrogenation of First-Row Main Group Multiple Bonds}, series = {Chemistry, A European Journal}, volume = {22}, journal = {Chemistry, A European Journal}, number = {48}, doi = {10.1002/chem.201604094}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139364}, pages = {17169 -- 17172}, year = {2016}, abstract = {Room temperature hydrogenation of an SIDep-stabilized diboryne (SIDep = 1,3-bis(diethylphenyl)-4,5-dihydroimidazol-2-ylidene) and a CAAC-supported diboracumulene (CAAC = 1-(2,6- diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) provided the first selective route to the corresponding 1,2-dihydrodiborenes. DFT calculations showed an overall exothermic (ΔG = 19.4 kcal mol\(^{-1}\) two-step asynchronous H\(_2\) addition mechanism proceeding via a bridging hydride.}, subject = {Diborane}, language = {en} } @article{ArrowsmithBoehnkeBraunschweigetal.2016, author = {Arrowsmith, Merle and B{\"o}hnke, Julian and Braunschweig, Holger and Celik, Mehmet and Claes, Christina and Ewing, William and Krummenacher, Ivo and Lubitz, Katharina and Schneider, Christoph}, title = {Neutral Diboron Analogues of Archetypal Aromatic Species by Spontaneous Cycloaddition}, series = {Angewandte Chemie, International Edition}, volume = {55}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201602384}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138226}, pages = {11271-11275}, year = {2016}, abstract = {Among the numerous routes organic chemists have developed to synthesize benzene derivatives and heteroaro- matic compounds, transition-metal-catalyzed cycloaddition reactions are the most elegant. In contrast, cycloaddition reactions of heavier alkene and alkyne analogues, though limited in scope, proceed uncatalyzed. In this work we present the first spontaneous cycloaddition reactions of lighter alkene and alkyne analogues. Selective addition of unactivated alkynes to boron-boron multiple bonds under ambient con- ditions yielded diborocarbon equivalents of simple aromatic hydrocarbons, including the first neutral 6 π-aromatic dibora- benzene compound, a 2  π-aromatic triplet biradical 1,3-dibor- ete, and a phosphine-stabilized 2  π-homoaromatic 1,3-dihydro- 1,3-diborete. DFT calculations suggest that all three com- pounds are aromatic and show frontier molecular orbitals matching those of the related aromatic hydrocarbons, C\(_6\)H\(_6\) and C\(_4\)H\(_4\)\(^{2+}\), and homoaromatic C\(_4\)H\(_5\)\(^+\).}, language = {en} } @article{BraunschweigConstantinidisDellermannetal.2016, author = {Braunschweig, Holger and Constantinidis, Philipp and Dellermann, Theresa and Ewing, William and Fischer, Ingo and Hess, Merlin and Knight, Fergus and Rempel, Anna and Schneider, Christoph and Ullrich, Stefan and Vargas, Alfredo and Woolins, Derek}, title = {Highly Strained Heterocycles Constructed from Boron-Boron Multiple Bonds and Heavy Chalcogens}, series = {Angewandte Chemie, International Edition}, volume = {55}, journal = {Angewandte Chemie, International Edition}, number = {18}, doi = {10.1002/anie.201601691}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138237}, pages = {5606 -- 5609}, year = {2016}, abstract = {The reactions of a diborene with elemental selenium or tellurium are shown to afford a diboraselenirane or diboratellurirane, respectively. These reactions are reminiscent of the sequestration of subvalent oxygen and nitrogen in the formation of oxiranes and aziridines; however, such reactivity is not known between alkenes and the heavy chalcogens. Although carbon is too electronegative to affect the reduction of elements with lower relative electronegativity, the highly reducing nature of the B B double bond enables reactions with Se0 and Te0. The capacity of multiple bonds between boron atoms to donate electron density is highlighted in reactions where diborynes behave as nucleophiles, attacking one of the two Te atoms of diaryltellurides, forming salts consisting of diboratellurenium cations and aryltelluride anions.}, subject = {Bor}, language = {en} } @article{ArnoldBraunschweigGruss2011, author = {Arnold, Thomas and Braunschweig, Holger and Gruss, Katrin}, title = {cyclo-Tri-mu-oxido-tris{[(eta 5,eta 5)-1,2-bis(cyclopentadienyl)-1,1,2,2-tetramethyldisilane]zirconium(IV)}: a trimeric disila-bridged oxidozirconocene}, series = {Acta Crystallographica Section E: metal-organic compounds}, volume = {67}, journal = {Acta Crystallographica Section E: metal-organic compounds}, doi = {10.1107/S1600536811007094}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134802}, pages = {M391-sup-23}, year = {2011}, abstract = {The title compound, [Zr(3)(C(14)H(20)Si(2))(3)O(3)], consists of three disila-bridged zirconocene units, which are connected via an oxide ligand, forming a nearly planar six-membered ring with a maximum displacement of 0.0191 (8) A. The compound was isolated as a by-product from a mixture of [(C(5)H(4)SiMe(2))(2)ZrCl(2)] and Li[AlH(4)] in Et(2)O.}, language = {en} }