@article{ZhaoYuHuetal.2015, author = {Zhao, De-Wei and Yu, Mang and Hu, Kai and Wang, Wei and Yang, Lei and Wang, Ben-Jie and Gao, Xiao-Hong and Guo, Yong-Ming and Xu, Yong-Qing and Wei, Yu-Shan and Tian, Si-Miao and Yang, Fan and Wang, Nan and Huang, Shi-Bo and Xie, Hui and Wei, Xiao-Wei and Jiang, Hai-Shen and Zang, Yu-Qiang and Ai, Jun and Chen, Yuan-Liang and Lei, Guang-Hua and Li, Yu-Jin and Tian, Geng and Li, Zong-Sheng and Cao, Yong and Ma, Li}, title = {Prevalence of Nontraumatic Osteonecrosis of the Femoral Head and its Associated Risk Factors in the Chinese Population: Results from a Nationally Representative Survey}, series = {Chinese Medical Journal}, volume = {128}, journal = {Chinese Medical Journal}, number = {21}, doi = {10.4103/0366-6999.168017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138482}, pages = {2843-2850}, year = {2015}, abstract = {Background: Nontraumatic osteonecrosis of the femoral head (NONFH) is a debilitating disease that represents a significant financial burden for both individuals and healthcare systems. Despite its significance, however, its prevalence in the Chinese general population remains unknown. This study aimed to investigate the prevalence of NONFH and its associated risk factors in the Chinese population. Methods: A nationally representative survey of 30,030 respondents was undertaken from June 2012 to August 2013. All participants underwent a questionnaire investigation, physical examination of hip, and bilateral hip joint X-ray and/or magnetic resonance imaging examination. Blood samples were taken after overnight fasting to test serum total cholesterol, triglyceride, and high-density lipoprotein (HDL) and low-density lipoprotein (LDL) levels. We then used multivariate logistic regression analysis to investigate the associations between various metabolic, demographic, and lifestyle-related variables and NONFH. Results: NONFH was diagnosed in 218 subjects (0.725\%) and the estimated NONFH cases were 8.12 million among Chinese people aged 15 years and over. The prevalence of NONFH was significantly higher in males than in females (1.02\% vs. 0.51\%, \(\chi^2\) = 24.997, P < 0.001). Among NONFH patients, North residents were subjected to higher prevalence of NONFH than that of South residents (0.85\% vs. 0.61\%, \(\chi^2\) = 5.847, P = 0.016). Our multivariate regression analysis showed that high blood levels of triglycerides, total cholesterol, LDL-cholesterol, and non-HDL-cholesterol, male, urban residence, family history of osteonecrosis of the femoral head, heavy smoking, alcohol abuse and glucocorticoid intake, overweight, and obesity were all significantly associated with an increased risk of NONFH. Conclusions: Our findings highlight that NONFH is a significant public health challenge in China and underscore the need for policy measures on the national level. Furthermore, NONFH shares a number of risk factors with atherosclerosis.}, language = {en} } @phdthesis{Huang2018, author = {Huang, Hua}, title = {Comparative investigation of the chemical composition and the water permeability of fruit and leaf cuticles}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152948}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The plant cuticle is a continuous extracellular protective layer covering the outermost surfaces of higher plants that are in contact with the surrounding atmosphere. The primary function of the cuticular lipid membrane, which is mainly composed of biopolymer cutin and cuticular waxes, is to protect the plant organs against uncontrolled water loss. The chemical composition and the biophysical properties of cuticular waxes affect the rate of water diffusion across the cuticle. Fruit transpiration plays an important role in the development and the maintenance of fruit quality. The fruit has been suggested to present better dehydration stress tolerance than the leaf. However, the differences in transpiration and the chemical composition of cuticular waxes between fruit and leaf have yet to be comprehensively investigated. The present study aims to investigate the water permeability and cuticular wax composition of fruit and leaf cuticles of a wide range of plant species and to elucidate the different roles of the cuticular wax components in the transpiration barrier. To address these objectives, fruit and leaf samples from 17 species were investigated. The cuticular transpiration of intact fruits and astomatous adaxial leaf surfaces and the minimum leaf conductance obtained by leaf drying curves for intact leaves were gravimetrically determined for a variety of plant species. The chemical composition of cuticular waxes of fruits and leaves was thoroughly analysed by gas chromatography with flame ionization and mass spectrometry. The water permeability of fruits ranged from 3.7 x 10-5 m s-1 (Prunus domestica subsp. syriaca) to 37.4 x 10-5 m s-1 (Coffea arabica), whereas permeability for leaves varied between 1.6 x 10-5 m s-1 (Cornus officinalis) and 4.5 x 10-5 m s-1 (Prunus domestica subsp. syriaca (L.)). The interspecies range of water permeability of fruits was significantly higher than that of leaves. Chemical analyses of the cuticular waxes demonstrated that fatty acids, primary alcohols, n-alkanes, aldehydes and alkyl esters were the predominant very-long-chain aliphatic compound classes of fruit and leaf surfaces. Sterols, such as β-sitosterol and campesterol, and triterpenoids, such as oleanolic acid, ursolic acid, α-amyrin and ß-amyrin, were the major cyclic compound classes in the cuticular wax membrane. The amount and composition of cuticular waxes of both fruits and leaves varied at an intraspecific level. There were no significant correlations between the total cuticular wax load or the individual cuticular wax composition and the water permeability of fruits or leaves independently or together. After combining the fruit and leaf data set, a significant correlation between the average chain length of very-long-chain aliphatic compounds and permeabilities was detected, i.e. the longer the average chain length, the lower the water permeability. Interestingly, n-Nonacosane (C29) was abundantly detected in fruit waxes of Rosaceae species. These fruits exhibited a relatively low transpiration level, which was very close to their leaf cuticular permeability. The present study suggests that the lower cuticular permeability of leaves, in comparison to that of fruits, may be attributed to the longer average chain length of aliphatic compounds. The accumulation of total wax, triterpenoids and aliphatic compounds may not contribute to the transpiration barrier directly. The present results are highly consistent with the previous model assumptions for the cuticular structure and transport barrier. Furthermore, this comparative study on leaf and fruit cuticles provides further insights linking the cuticular wax chemistry to the physiological properties of the plant cuticle.}, subject = {Cuticle}, language = {en} }