@article{SchilcherHilsmannRauscheretal.2021, author = {Schilcher, Felix and Hilsmann, Lioba and Rauscher, Lisa and Değirmenci, Laura and Krischke, Markus and Krischke, Beate and Ankenbrand, Markus and Rutschmann, Benjamin and Mueller, Martin J. and Steffan-Dewenter, Ingolf and Scheiner, Ricarda}, title = {In vitro rearing changes social task performance and physiology in honeybees}, series = {Insects}, volume = {13}, journal = {Insects}, number = {1}, issn = {2075-4450}, doi = {10.3390/insects13010004}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-252305}, year = {2021}, abstract = {In vitro rearing of honeybee larvae is an established method that enables exact control and monitoring of developmental factors and allows controlled application of pesticides or pathogens. However, only a few studies have investigated how the rearing method itself affects the behavior of the resulting adult honeybees. We raised honeybees in vitro according to a standardized protocol: marking the emerging honeybees individually and inserting them into established colonies. Subsequently, we investigated the behavioral performance of nurse bees and foragers and quantified the physiological factors underlying the social organization. Adult honeybees raised in vitro differed from naturally reared honeybees in their probability of performing social tasks. Further, in vitro-reared bees foraged for a shorter duration in their life and performed fewer foraging trips. Nursing behavior appeared to be unaffected by rearing condition. Weight was also unaffected by rearing condition. Interestingly, juvenile hormone titers, which normally increase strongly around the time when a honeybee becomes a forager, were significantly lower in three- and four-week-old in vitro bees. The effects of the rearing environment on individual sucrose responsiveness and lipid levels were rather minor. These data suggest that larval rearing conditions can affect the task performance and physiology of adult bees despite equal weight, pointing to an important role of the colony environment for these factors. Our observations of behavior and metabolic pathways offer important novel insight into how the rearing environment affects adult honeybees.}, language = {en} } @article{LaswayKinaboMremietal.2021, author = {Lasway, Julius V. and Kinabo, Neema R. and Mremi, Rudolf F. and Martin, Emanuel H. and Nyakunga, Oliver C. and Sanya, John J. and Rwegasira, Gration M. and Lesio, Nicephor and Gideon, Hulda and Pauly, Alain and Eardley, Connal and Peters, Marcell K. and Peterson, Andrew T. and Steffan-Dewenter, Ingolf and Njovu, Henry K.}, title = {A synopsis of the Bee occurrence data of northern Tanzania}, series = {Biodiversity Data Journal}, volume = {9}, journal = {Biodiversity Data Journal}, doi = {10.3897/BDJ.9.e68190}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265018}, year = {2021}, abstract = {Background Bees (Hymenoptera: Apoidea: Anthophila) are the most important group of pollinators with about 20,507 known species worldwide. Despite the critical role of bees in providing pollination services, studies aiming at understanding which species are present across disturbance gradients are scarce. Limited taxononomic information for the existing and unidentified bee species in Tanzania make their conservation haphazard. Here, we present a dataset of bee species records obtained from a survey in nothern Tanzania i.e. Kilimanjaro, Arusha and Manyara regions. Our findings serve as baseline data necessary for understanding the diversity and distribution of bees in the northern parts of the country, which is a critical step in devising robust conservation and monitoring strategies for their populations. New information In this paper, we present information on 45 bee species belonging to 20 genera and four families sampled using a combination of sweep-netting and pan trap methods. Most species (27, ~ 60\%) belong to the family Halictidae followed by 16 species (35.5\%) from the family Apidae. Megachilidae and Andrenidae were the least represented, each with only one species (2.2\%). Additional species of Apidae and Megachilidae sampled during this survey are not yet published on Global Biodiversity Information Facility (GBIF), once they will be available on GBIF, they will be published in a subsequent paper. From a total of 953 occurrences, highest numbers were recorded in Kilimanjaro Region (n = 511), followed by Arusha (n = 410) and Manyara (n = 32), but this pattern reflects the sampling efforts of the research project rather than real bias in the distributions of bee species in northern Tanzania.}, language = {en} } @article{MayrKellerPetersetal.2021, author = {Mayr, Antonia V. and Keller, Alexander and Peters, Marcell K. and Grimmer, Gudrun and Krischke, Beate and Geyer, Mareen and Schmitt, Thomas and Steffan-Dewenter, Ingolf}, title = {Cryptic species and hidden ecological interactions of halictine bees along an elevational gradient}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {12}, doi = {10.1002/ece3.7605}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238853}, pages = {7700 -- 7712}, year = {2021}, abstract = {Changes of abiotic and biotic conditions along elevational gradients represent serious challenges to organisms which may promote the turnover of species, traits and biotic interaction partners. Here, we used molecular methods to study cuticular hydrocarbon (CHC) profiles, biotic interactions and phylogenetic relationships of halictid bees of the genus Lasioglossum along a 2,900 m elevational gradient at Mt. Kilimanjaro, Tanzania. We detected a strong species turnover of morphologically indistinguishable taxa with phylogenetically clustered cryptic species at high elevations, changes in CHC profiles, pollen resource diversity, and a turnover in the gut and body surface microbiome of bees. At high elevations, increased proportions of saturated compounds in CHC profiles indicate physiological adaptations to prevent desiccation. More specialized diets with higher proportions of low-quality Asteraceae pollen imply constraints in the availability of food resources. Interactive effects of climatic conditions on gut and surface microbiomes, CHC profiles, and pollen diet suggest complex feedbacks among abiotic conditions, ecological interactions, physiological adaptations, and phylogenetic constraints as drivers of halictid bee communities at Mt. Kilimanjaro.}, language = {en} } @article{DuquePoelmanSteffanDewenter2021, author = {Duque, Laura and Poelman, Erik H. and Steffan-Dewenter, Ingolf}, title = {Plant age at the time of ozone exposure affects flowering patterns, biotic interactions and reproduction of wild mustard}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-02878-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265742}, year = {2021}, abstract = {Exposure of plants to environmental stressors can modify their metabolism, interactions with other organisms and reproductive success. Tropospheric ozone is a source of plant stress. We investigated how an acute exposure to ozone at different times of plant development affects reproductive performance, as well as the flowering patterns and the interactions with pollinators and herbivores, of wild mustard plants. The number of open flowers was higher on plants exposed to ozone at earlier ages than on the respective controls, while plants exposed at later ages showed a tendency for decreased number of open flowers. The changes in the number of flowers provided a good explanation for the ozone-induced effects on reproductive performance and on pollinator visitation. Ozone exposure at earlier ages also led to either earlier or extended flowering periods. Moreover, ozone tended to increase herbivore abundance, with responses depending on herbivore taxa and the plant age at the time of ozone exposure. These results suggest that the effects of ozone exposure depend on the developmental stage of the plant, affecting the flowering patterns in different directions, with consequences for pollination and reproduction of annual crops and wild species.}, language = {en} } @article{UhlerRedlichZhangetal.2021, author = {Uhler, Johannes and Redlich, Sarah and Zhang, Jie and Hothorn, Torsten and Tobisch, Cynthia and Ewald, J{\"o}rg and Thorn, Simon and Seibold, Sebastian and Mitesser, Oliver and Morin{\`e}re, J{\´e}r{\^o}me and Bozicevic, Vedran and Benjamin, Caryl S. and Englmeier, Jana and Fricke, Ute and Ganuza, Cristina and Haensel, Maria and Riebl, Rebekka and Rojas-Botero, Sandra and Rummler, Thomas and Uphus, Lars and Schmidt, Stefan and Steffan-Dewenter, Ingolf and M{\"u}ller, J{\"o}rg}, title = {Relationships of insect biomass and richness with land use along a climate gradient}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-26181-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265058}, year = {2021}, abstract = {Recently reported insect declines have raised both political and social concern. Although the declines have been attributed to land use and climate change, supporting evidence suffers from low taxonomic resolution, short time series, a focus on local scales, and the collinearity of the identified drivers. In this study, we conducted a systematic assessment of insect populations in southern Germany, which showed that differences in insect biomass and richness are highly context dependent. We found the largest difference in biomass between semi-natural and urban environments (-42\%), whereas differences in total richness (-29\%) and the richness of threatened species (-56\%) were largest from semi-natural to agricultural environments. These results point to urbanization and agriculture as major drivers of decline. We also found that richness and biomass increase monotonously with increasing temperature, independent of habitat. The contrasting patterns of insect biomass and richness question the use of these indicators as mutual surrogates. Our study provides support for the implementation of more comprehensive measures aimed at habitat restoration in order to halt insect declines.}, language = {en} } @article{NjovuSteffanDewenterGebertetal.2021, author = {Njovu, Henry K. and Steffan-Dewenter, Ingolf and Gebert, Friederike and Schellenberger Costa, David and Kleyer, Michael and Wagner, Thomas and Peters, Marcell K.}, title = {Plant traits mediate the effects of climate on phytophagous beetle diversity on Mt. Kilimanjaro}, series = {Ecology}, volume = {102}, journal = {Ecology}, number = {12}, doi = {10.1002/ecy.3521}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257343}, year = {2021}, abstract = {Patterns of insect diversity along elevational gradients are well described in ecology. However, it remains little tested how variation in the quantity, quality, and diversity of food resources influence these patterns. Here we analyzed the direct and indirect effects of climate, food quantity (estimated by net primary productivity), quality (variation in the specific leaf area index, leaf nitrogen to phosphorus and leaf carbon to nitrogen ratio), and food diversity (diversity of leaf traits) on the species richness of phytophagous beetles along the broad elevation and land use gradients of Mt. Kilimanjaro, Tanzania. We sampled beetles at 65 study sites located in both natural and anthropogenic habitats, ranging from 866 to 4,550 m asl. We used path analysis to unravel the direct and indirect effects of predictor variables on species richness. In total, 3,154 phytophagous beetles representing 19 families and 304 morphospecies were collected. We found that the species richness of phytophagous beetles was bimodally distributed along the elevation gradient with peaks at the lowest (˜866 m asl) and upper mid-elevations (˜3,200 m asl) and sharply declined at higher elevations. Path analysis revealed temperature- and climate-driven changes in primary productivity and leaf trait diversity to be the best predictors of changes in the species richness of phytophagous beetles. Species richness increased with increases in mean annual temperature, primary productivity, and with increases in the diversity of leaf traits of local ecosystems. Our study demonstrates that, apart from temperature, the quantity and diversity of food resources play a major role in shaping diversity gradients of phytophagous insects. Drivers of global change, leading to a change of leaf traits and causing reductions in plant diversity and productivity, may consequently reduce the diversity of herbivore assemblages.}, language = {en} } @article{RedlichMartinSteffan‐Dewenter2021, author = {Redlich, Sarah and Martin, Emily A. and Steffan-Dewenter, Ingolf}, title = {Sustainable landscape, soil and crop management practices enhance biodiversity and yield in conventional cereal systems}, series = {Journal of Applied Ecology}, volume = {58}, journal = {Journal of Applied Ecology}, number = {3}, doi = {10.1111/1365-2664.13821}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228345}, pages = {507 -- 517}, year = {2021}, abstract = {Input-driven, modern agriculture is commonly associated with large-scale threats to biodiversity, the disruption of ecosystem services and long-term risks to food security and human health. A switch to more sustainable yet highly productive farming practices seems unavoidable. However, an integrative evaluation of targeted management schemes at field and landscape scales is currently lacking. Furthermore, the often-disproportionate influence of soil conditions and agrochemicals on yields may mask the benefits of biodiversity-driven ecosystem services. Here, we used a real-world ecosystem approach to identify sustainable management practices for enhanced functional biodiversity and yield on 28 temperate wheat fields. Using path analysis, we assessed direct and indirect links between soil, crop and landscape management with natural enemies and pests, as well as follow-on effects on yield quantity and quality. A paired-field design with a crossed insecticide-fertilizer experiment allowed us to control for the relative influence of soil characteristics and agrochemical inputs. We demonstrate that biodiversity-enhancing management options such as reduced tillage, crop rotation diversity and small field size can enhance natural enemies without relying on agrochemical inputs. Similarly, we show that in this system controlling pests and weeds by agrochemical means is less relevant than expected for final crop productivity. Synthesis and applications. Our study highlights soil, crop and landscape management practices that can enhance beneficial biodiversity while reducing agrochemical usage and negative environmental impacts of conventional agriculture. The diversification of cropping systems and conservation tillage are practical measures most farmers can implement without productivity losses. Combining local measures with improved landscape management may also strengthen the sustainability and resilience of cropping systems in light of future global change.}, language = {en} } @article{VogelChungaSunetal.2021, author = {Vogel, Cassandra and Chunga, Timothy L. and Sun, Xiaoxuan and Poveda, Katja and Steffan-Dewenter, Ingolf}, title = {Higher bee abundance, but not pest abundance, in landscapes with more agriculture on a late-flowering legume crop in tropical smallholder farms}, series = {PeerJ}, volume = {9}, journal = {PeerJ}, doi = {10.7717/peerj.10732}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231491}, year = {2021}, abstract = {Background Landscape composition is known to affect both beneficial insect and pest communities on crop fields. Landscape composition therefore can impact ecosystem (dis)services provided by insects to crops. Though landscape effects on ecosystem service providers have been studied in large-scale agriculture in temperate regions, there is a lack of representation of tropical smallholder agriculture within this field of study, especially in sub-Sahara Africa. Legume crops can provide important food security and soil improvement benefits to vulnerable agriculturalists. However, legumes are dependent on pollinating insects, particularly bees (Hymenoptera: Apiformes) for production and are vulnerable to pests. We selected 10 pigeon pea (Fabaceae: Cajunus cajan (L.)) fields in Malawi with varying proportions of semi-natural habitat and agricultural area within a 1 km radius to study: (1) how the proportion of semi-natural habitat and agricultural area affects the abundance and richness of bees and abundance of florivorous blister beetles (Coleoptera: Melloidae), (2) if the proportion of flowers damaged and fruit set difference between open and bagged flowers are correlated with the proportion of semi-natural habitat or agricultural area and (3) if pigeon pea fruit set difference between open and bagged flowers in these landscapes was constrained by pest damage or improved by bee visitation. Methods We performed three, ten-minute, 15 m, transects per field to assess blister beetle abundance and bee abundance and richness. Bees were captured and identified to (morpho)species. We assessed the proportion of flowers damaged by beetles during the flowering period. We performed a pollinator and pest exclusion experiment on 15 plants per field to assess whether fruit set was pollinator limited or constrained by pests. Results In our study, bee abundance was higher in areas with proportionally more agricultural area surrounding the fields. This effect was mostly driven by an increase in honeybees. Bee richness and beetle abundances were not affected by landscape characteristics, nor was flower damage or fruit set difference between bagged and open flowers. We did not observe a positive effect of bee density or richness, nor a negative effect of florivory, on fruit set difference. Discussion In our study area, pigeon pea flowers relatively late—well into the dry season. This could explain why we observe higher densities of bees in areas dominated by agriculture rather than in areas with more semi-natural habitat where resources for bees during this time of the year are scarce. Therefore, late flowering legumes may be an important food resource for bees during a period of scarcity in the seasonal tropics. The differences in patterns between our study and those conducted in temperate regions highlight the need for landscape-scale studies in areas outside the temperate region.}, language = {en} }