@phdthesis{Matthaiakakis2021, author = {Matthaiakakis, Ioannis}, title = {Hydrodynamics in Solid State Systems and the AdS/CFT correspondence}, doi = {10.25972/OPUS-24439}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244390}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {We employ the AdS/CFT correspondence and hydrodynamics to analyze the transport properties of \(2+1\) dimensional electron fluids. In this way, we use theoretical methods from both condensed matter and high-energy physics to derive tangible predictions that are directly verifiable in experiment. The first research topic we consider is strongly-coupled electron fluids. Motivated by early results by Gurzhi on the transport properties of weakly coupled fluids, we consider whether similar properties are manifest in strongly coupled fluids. More specifically, we focus on the hydrodynamic tail of the Gurzhi effect: A decrease in fluid resistance with increasing temperature due to the formation of a Poiseuille flow of electrons in the sample. We show that the hydrodynamic tail of the Gurzhi effect is also realized in strongly coupled and fully relativistic fluids, but with modified quantitative features. Namely, strongly-coupled fluids always exhibit a smaller resistance than weakly coupled ones and are, thus, far more efficient conductors. We also suggest that the coupling dependence of the resistance can be used to measure the coupling strength of the fluid. In view of these measurements, we provide analytical results for the resistance as a function of the shear viscosity over entropy density \(\eta/s\) of the fluid. \(\eta/s\) is itself a known function of the coupling strength in the weak and infinite coupling limits. In further analysis for strongly-coupled fluids, we propose a novel strongly coupled Dirac material based on a kagome lattice, Scandium-substituted Herbertsmithite (ScHb). The large coupling strength of this material, as well as its Dirac nature, provides us with theoretical and experimental access to non-perturbative relativistic and quantum critical physics. A highly suitable method for analyzing such a material's transport properties is the AdS/CFT correspondence. Concretely, using AdS/CFT we derive an estimate for ScHb's \(\eta/s\) and show that it takes a value much smaller than that observed in weakly coupled materials. In turn, the smallness of \(\eta/s\) implies that ScHb's Reynolds number, \(Re\), is large. In fact, \(Re\) is large enough for turbulence, the most prevalent feature of fluids in nature, to make its appearance for the first time in electronic fluids. Switching gears, we proceed to the second research topic considered in this thesis: Weakly coupled parity-breaking electron fluids. More precisely, we analyze the quantitative and qualitative changes to the classical Hall effect, for electrons propagating hydrodynamically in a lead. Apart from the Lorentz force, a parity-breaking fluid's motion is also impacted by the Hall-viscous force; the shear-stress force induced by the Hall-viscosity. We show that the interplay of these two forces leads to a hydrodynamic Hall voltage with non-linear dependence on the magnetic field. More importantly, the Lorentz and Hall-viscous forces become equal at a non-vanishing magnetic field, leading to a trivial hydrodynamic Hall voltage. Moreover, for small magnetic fields we provide analytic results for the dependence of the hydrodynamic Hall voltage on all experimentally-tuned parameters of our simulations, such as temperature and density. These dependences, along with the zero of the hydrodynamic Hall voltage, are distinct features of hydrodynamic transport and can be used to verify our predictions in experiments. Last but not least, we consider how a distinctly electronic property, spin, can be included into the hydrodynamic framework. In particular, we construct an effective action for non-dissipative spin hydrodynamics up to first order in a suitably defined derivative expansion. We also show that interesting spin-transport effects appear at second order in the derivative expansion. Namely, we show that the fluid's rotation polarizes its spin. This is the hydrodynamic manifestation of the Barnett effect and provides us with an example of hydrodynamic spintronics. To conclude this thesis, we discuss several possible extensions of our research, as well as proposals for research in related directions.}, subject = {Hydrodynamics}, language = {en} } @article{DiSanteErdmengerGreiteretal.2020, author = {Di Sante, Domenico and Erdmenger, Johanna and Greiter, Martin and Matthaiakakis, Ioannis and Meyer, Ren{\´e} and Fernandez, David Rodr{\´i}guez and Thomale, Ronny and van Loon, Erik and Wehling, Tim}, title = {Turbulent hydrodynamics in strongly correlated Kagome metals}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-17663-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230380}, year = {2020}, abstract = {A current challenge in condensed matter physics is the realization of strongly correlated, viscous electron fluids. These fluids can be described by holography, that is, by mapping them onto a weakly curved gravitational theory via gauge/gravity duality. The canonical system considered for realizations has been graphene. In this work, we show that Kagome systems with electron fillings adjusted to the Dirac nodes provide a much more compelling platform for realizations of viscous electron fluids, including non-linear effects such as turbulence. In particular, we find that in Scandium Herbertsmithite, the fine-structure constant, which measures the effective Coulomb interaction, is enhanced by a factor of about 3.2 as compared to graphene. We employ holography to estimate the ratio of the shear viscosity over the entropy density in Sc-Herbertsmithite, and find it about three times smaller than in graphene. These findings put the turbulent flow regime described by holography within the reach of experiments. Viscous electron fluids are predicted in strongly correlated systems but remain challenging to realize. Here, the authors predict enhanced effective Coulomb interaction and reduced ratio of the shear viscosity over entropy density in a Kagome metal, inferring turbulent flow of viscous electron fluids.}, language = {en} }