@article{FanLiChaoetal.2015, author = {Fan, Ben and Li, Lei and Chao, Yanjie and F{\"o}rstner, Konrad and Vogel, J{\"o}rg and Borriss, Rainer and Wu, Xiao-Qin}, title = {dRNA-Seq Reveals Genomewide TSSs and Noncoding RNAs of Plant Beneficial Rhizobacterium Bacillus amyloliquefaciens FZB42}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {11}, doi = {10.1371/journal.pone.0142002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138369}, pages = {e0142002}, year = {2015}, abstract = {Bacillus amyloliquefaciens subsp. plantarum FZB42 is a representative of Gram-positive plant-growth-promoting rhizobacteria (PGPR) that inhabit plant root environments. In order to better understand the molecular mechanisms of bacteria-plant symbiosis, we have systematically analyzed the primary transcriptome of strain FZB42 grown under rhizospheremimicking conditions using differential RNA sequencing (dRNA-seq). Our analysis revealed 4,877 transcription start sites for protein-coding genes, identified genes differentially expressed under different growth conditions, and corrected many previously mis-annotated genes. We also identified a large number of riboswitches and cis-encoded antisense RNAs, as well as trans-encoded small noncoding RNAs that may play important roles in the gene regulation of Bacillus. Overall, our analyses provided a landscape of Bacillus primary transcriptome and improved the knowledge of rhizobacteria-host interactions.}, language = {en} } @article{FroehlichHanekePapenfortetal.2016, author = {Fr{\"o}hlich, Kathrin S. and Haneke, Katharina and Papenfort, Kai and Vogel, J{\"o}rg}, title = {The target spectrum of SdsR small RNA in Salmonella}, series = {Nucleic Acids Research}, volume = {44}, journal = {Nucleic Acids Research}, number = {21}, doi = {10.1093/nar/gkw632}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175365}, pages = {10406-10422}, year = {2016}, abstract = {Model enteric bacteria such as Escherichia coli and Salmonella enterica express hundreds of small non-coding RNAs (sRNAs), targets for most of which are yet unknown. Some sRNAs are remarkably well conserved, indicating that they serve cellular functions that go beyond the necessities of a single species. One of these 'core sRNAs' of largely unknown function is the abundant ∼100-nucleotide SdsR sRNA which is transcribed by the general stress σ-factor, σ\(^{S}\) and accumulates in stationary phase. In Salmonella, SdsR was known to inhibit the synthesis of the species-specific porin, OmpD. However, sdsR genes are present in almost all enterobacterial genomes, suggesting that additional, conserved targets of this sRNA must exist. Here, we have combined SdsR pulse-expression with whole genome transcriptomics to discover 20 previously unknown candidate targets of SdsR which include mRNAs coding for physiologically important regulators such as the carbon utilization regulator, CRP, the nucleoid-associated chaperone, StpA and the antibiotic resistance transporter, TolC. Processing of SdsR by RNase E results in two cellular SdsR variants with distinct target spectra. While the overall physiological role of this orphan core sRNA remains to be fully understood, the new SdsR targets present valuable leads to determine sRNA functions in resting bacteria.}, language = {en} } @article{FroehlichPapenfortBergeretal.2012, author = {Fr{\"o}hlich, Kathrin S. and Papenfort, Kai and Berger, Allison A. and Vogel, J{\"o}rg}, title = {A conserved RpoS-dependent small RNA controls the synthesis of major porin OmpD}, series = {Nucleic Acids Research}, volume = {40}, journal = {Nucleic Acids Research}, number = {8}, doi = {10.1093/nar/gkr1156}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134230}, pages = {3623-3640}, year = {2012}, abstract = {A remarkable feature of many small non-coding RNAs (sRNAs) of Escherichia coli and Salmonella is their accumulation in the stationary phase of bacterial growth. Several stress response regulators and sigma factors have been reported to direct the transcription of stationary phase-specific sRNAs, but a widely conserved sRNA gene that is controlled by the major stationary phase and stress sigma factor, Sigma(S) (RpoS), has remained elusive. We have studied in Salmonella the conserved SdsR sRNA, previously known as RyeB, one of the most abundant stationary phase-specific sRNAs in E. coli. Alignments of the sdsR promoter region and genetic analysis strongly suggest that this sRNA gene is selectively transcribed by Sigma(S). We show that SdsR down-regulates the synthesis of the major Salmonella porin OmpD by Hfq-dependent base pairing; SdsR thus represents the fourth sRNA to regulate this major outer membrane porin. Similar to the InvR, MicC and RybB sRNAs, SdsR recognizes the ompD mRNA in the coding sequence, suggesting that this mRNA may be primarily targeted downstream of the start codon. The SdsR-binding site in ompD was localized by 3'-RACE, an experimental approach that promises to be of use in predicting other sRNA-target interactions in bacteria.}, language = {en} } @article{GerovaWickeChiharaetal.2021, author = {Gerova, Milan and Wicke, Laura and Chihara, Kotaro and Schneider, Cornelius and Lavigne, Rob and Vogel, J{\"o}rg}, title = {A grad-seq view of RNA and protein complexes in Pseudomonas aeruginosa under standard and bacteriophage predation conditions}, series = {mbio}, volume = {12}, journal = {mbio}, number = {1}, doi = {10.1128/mBio.03454-20}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259054}, pages = {e03454-20}, year = {2021}, abstract = {The Gram-negative rod-shaped bacterium Pseudomonas aeruginosa is not only a major cause of nosocomial infections but also serves as a model species of bacterial RNA biology. While its transcriptome architecture and posttranscriptional regulation through the RNA-binding proteins Hfq, RsmA, and RsmN have been studied in detail, global information about stable RNA-protein complexes in this human pathogen is currently lacking. Here, we implement gradient profiling by sequencing (Grad-seq) in exponentially growing P. aeruginosa cells to comprehensively predict RNA and protein complexes, based on glycerol gradient sedimentation profiles of >73\% of all transcripts and ∼40\% of all proteins. As to benchmarking, our global profiles readily reported complexes of stable RNAs of P. aeruginosa, including 6S RNA with RNA polymerase and associated product RNAs (pRNAs). We observe specific clusters of noncoding RNAs, which correlate with Hfq and RsmA/N, and provide a first hint that P. aeruginosa expresses a ProQ-like FinO domain-containing RNA-binding protein. To understand how biological stress may perturb cellular RNA/protein complexes, we performed Grad-seq after infection by the bacteriophage ΦKZ. This model phage, which has a well-defined transcription profile during host takeover, displayed efficient translational utilization of phage mRNAs and tRNAs, as evident from their increased cosedimentation with ribosomal subunits. Additionally, Grad-seq experimentally determines previously overlooked phage-encoded noncoding RNAs. Taken together, the Pseudomonas protein and RNA complex data provided here will pave the way to a better understanding of RNA-protein interactions during viral predation of the bacterial cell. IMPORTANCE Stable complexes by cellular proteins and RNA molecules lie at the heart of gene regulation and physiology in any bacterium of interest. It is therefore crucial to globally determine these complexes in order to identify and characterize new molecular players and regulation mechanisms. Pseudomonads harbor some of the largest genomes known in bacteria, encoding ∼5,500 different proteins. Here, we provide a first glimpse on which proteins and cellular transcripts form stable complexes in the human pathogen Pseudomonas aeruginosa. We additionally performed this analysis with bacteria subjected to the important and frequently encountered biological stress of a bacteriophage infection. We identified several molecules with established roles in a variety of cellular pathways, which were affected by the phage and can now be explored for their role during phage infection. Most importantly, we observed strong colocalization of phage transcripts and host ribosomes, indicating the existence of specialized translation mechanisms during phage infection. All data are publicly available in an interactive and easy to use browser.}, language = {en} } @article{GorskiVogelSalibaetal.2014, author = {Gorski, Stanislaw A. and Vogel, J{\"o}rg and Saliba, Antoine-Emmanuel and Westermann, Alexander J.}, title = {Single-cell RNA-seq: advances and future challenges}, doi = {10.1093/nar/gku555}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110993}, year = {2014}, abstract = {Phenotypically identical cells can dramatically vary with respect to behavior during their lifespan and this variation is reflected in their molecular composition such as the transcriptomic landscape. Singlecell transcriptomics using next-generation transcript sequencing (RNA-seq) is now emerging as a powerful tool to profile cell-to-cell variability on a genomic scale. Its application has already greatly impacted our conceptual understanding of diverse biological processes with broad implications for both basic and clinical research. Different single-cell RNAseq protocols have been introduced and are reviewed here - each one with its own strengths and current limitations. We further provide an overview of the biological questions single-cell RNA-seq has been used to address, the major findings obtained from such studies, and current challenges and expected future developments in this booming field.}, subject = {RNS}, language = {en} } @article{HeidrichBauriedlBarquistetal.2017, author = {Heidrich, Nadja and Bauriedl, Saskia and Barquist, Lars and Li, Lei and Schoen, Christoph and Vogel, J{\"o}rg}, title = {The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq}, series = {Nucleic Acids Research}, volume = {45}, journal = {Nucleic Acids Research}, number = {10}, doi = {10.1093/nar/gkx168}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170828}, pages = {6147-6167}, year = {2017}, abstract = {Neisseria meningitidis is a human commensal that can also cause life-threatening meningitis and septicemia. Despite growing evidence for RNA-based regulation in meningococci, their transcriptome structure and output of regulatory small RNAs (sRNAs) are incompletely understood. Using dRNA-seq, we have mapped at single-nucleotide resolution the primary transcriptome of N. meningitidis strain 8013. Annotation of 1625 transcriptional start sites defines transcription units for most protein-coding genes but also reveals a paucity of classical σ70-type promoters, suggesting the existence of activators that compensate for the lack of -35 consensus sequences in N. meningitidis. The transcriptome maps also reveal 65 candidate sRNAs, a third of which were validated by northern blot analysis. Immunoprecipitation with the RNA chaperone Hfq drafts an unexpectedly large post-transcriptional regulatory network in this organism, comprising 23 sRNAs and hundreds of potential mRNA targets. Based on this data, using a newly developed gfp reporter system we validate an Hfq-dependent mRNA repression of the putative colonization factor PrpB by the two trans-acting sRNAs RcoF1/2. Our genome-wide RNA compendium will allow for a better understanding of meningococcal transcriptome organization and riboregulation with implications for colonization of the human nasopharynx.}, language = {en} } @article{HennessenMiethkeZaburannyietal.2020, author = {Hennessen, Fabienne and Miethke, Marcus and Zaburannyi, Nestor and Loose, Maria and Lukežič, Tadeja and Bernecker, Steffen and H{\"u}ttel, Stephan and Jansen, Rolf and Schmiedel, Judith and Fritzenwanker, Moritz and Imirzalioglu, Can and Vogel, J{\"o}rg and Westermann, Alexander J. and Hesterkamp, Thomas and Stadler, Marc and Wagenlehner, Florian and Petković, Hrvoje and Herrmann, Jennifer and M{\"u}ller, Rolf}, title = {Amidochelocardin overcomes resistance mechanisms exerted on tetracyclines and natural chelocardin}, series = {Antibiotics}, volume = {9}, journal = {Antibiotics}, number = {9}, issn = {2079-6382}, doi = {10.3390/antibiotics9090619}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213149}, year = {2020}, abstract = {The reassessment of known but neglected natural compounds is a vital strategy for providing novel lead structures urgently needed to overcome antimicrobial resistance. Scaffolds with resistance-breaking properties represent the most promising candidates for a successful translation into future therapeutics. Our study focuses on chelocardin, a member of the atypical tetracyclines, and its bioengineered derivative amidochelocardin, both showing broad-spectrum antibacterial activity within the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) panel. Further lead development of chelocardins requires extensive biological and chemical profiling to achieve favorable pharmaceutical properties and efficacy. This study shows that both molecules possess resistance-breaking properties enabling the escape from most common tetracycline resistance mechanisms. Further, we show that these compounds are potent candidates for treatment of urinary tract infections due to their in vitro activity against a large panel of multidrug-resistant uropathogenic clinical isolates. In addition, the mechanism of resistance to natural chelocardin was identified as relying on efflux processes, both in the chelocardin producer Amycolatopsis sulphurea and in the pathogen Klebsiella pneumoniae. Resistance development in Klebsiella led primarily to mutations in ramR, causing increased expression of the acrAB-tolC efflux pump. Most importantly, amidochelocardin overcomes this resistance mechanism, revealing not only the improved activity profile but also superior resistance-breaking properties of this novel antibacterial compound.}, language = {en} } @article{HershkoShalevOdenheimerBergmanElgrablyWeissetal.2016, author = {Hershko-Shalev, Tal and Odenheimer-Bergman, Ahuva and Elgrably-Weiss, Maya and Ben-Zvi, Tamar and Govindarajan, Sutharsan and Seri, Hemda and Papenfort, Kai and Vogel, J{\"o}rg and Altuvia, Shoshy}, title = {Gifsy-1 Prophage IsrK with Dual Function as Small and Messenger RNA Modulates Vital Bacterial Machineries}, series = {PLoS Genetics}, volume = {12}, journal = {PLoS Genetics}, number = {4}, doi = {10.1371/journal.pgen.1005975}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166717}, pages = {e1005975}, year = {2016}, abstract = {While an increasing number of conserved small regulatory RNAs (sRNAs) are known to function in general bacterial physiology, the roles and modes of action of sRNAs from horizontally acquired genomic regions remain little understood. The IsrK sRNA of Gifsy-1 prophage of Salmonella belongs to the latter class. This regulatory RNA exists in two isoforms. The first forms, when a portion of transcripts originating from isrK promoter reads-through the IsrK transcription-terminator producing a translationally inactive mRNA target. Acting in trans, the second isoform, short IsrK RNA, binds the inactive transcript rendering it translationally active. By switching on translation of the first isoform, short IsrK indirectly activates the production of AntQ, an antiterminator protein located upstream of isrK. Expression of antQ globally interferes with transcription termination resulting in bacterial growth arrest and ultimately cell death. Escherichia coli and Salmonella cells expressing AntQ display condensed chromatin morphology and localization of UvrD to the nucleoid. The toxic phenotype of AntQ can be rescued by co-expression of the transcription termination factor, Rho, or RNase H, which protects genomic DNA from breaks by resolving R-loops. We propose that AntQ causes conflicts between transcription and replication machineries and thus promotes DNA damage. The isrK locus represents a unique example of an island-encoded sRNA that exerts a highly complex regulatory mechanism to tune the expression of a toxic protein.}, language = {en} } @article{HollenhorstJurastowNandigamaetal.2020, author = {Hollenhorst, Monika I. and Jurastow, Innokentij and Nandigama, Rajender and Appenzeller, Silke and Li, Lei and Vogel, J{\"o}rg and Wiederhold, Stephanie and Althaus, Mike and Empting, Martin and Altm{\"u}ller, Janine and Hirsch, Anna K. H. and Flockerzi, Veit and Canning, Brendan J. and Saliba, Antoine-Emmanuel and Krasteva-Christ, Gabriela}, title = {Tracheal brush cells release acetylcholine in response to bitter tastants for paracrine and autocrine signaling}, series = {The FASEB Journal}, volume = {34}, journal = {The FASEB Journal}, number = {1}, doi = {10.1096/fj.201901314RR}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213516}, pages = {316 -- 332}, year = {2020}, abstract = {For protection from inhaled pathogens many strategies have evolved in the airways such as mucociliary clearance and cough. We have previously shown that protective respiratory reflexes to locally released bacterial bitter "taste" substances are most probably initiated by tracheal brush cells (BC). Our single-cell RNA-seq analysis of murine BC revealed high expression levels of cholinergic and bitter taste signaling transcripts (Tas2r108, Gnat3, Trpm5). We directly demonstrate the secretion of acetylcholine (ACh) from BC upon stimulation with the Tas2R agonist denatonium. Inhibition of the taste transduction cascade abolished the increase in [Ca\(^{2+}\)]\(_{i}\) in BC and subsequent ACh-release. ACh-release is regulated in an autocrine manner. While the muscarinic ACh-receptors M3R and M1R are activating, M2R is inhibitory. Paracrine effects of ACh released in response to denatonium included increased [Ca\(^{2+}\)]\(_{i}\) in ciliated cells. Stimulation by denatonium or with Pseudomonas quinolone signaling molecules led to an increase in mucociliary clearance in explanted tracheae that was Trpm5- and M3R-mediated. We show that ACh-release from BC via the bitter taste cascade leads to immediate paracrine protective responses that can be boosted in an autocrine manner. This mechanism represents the initial step for the activation of innate immune responses against pathogens in the airways.}, language = {en} } @article{HombergerBarquistVogel2022, author = {Homberger, Christina and Barquist, Lars and Vogel, J{\"o}rg}, title = {Ushering in a new era of single-cell transcriptomics in bacteria}, series = {microLife}, volume = {3}, journal = {microLife}, doi = {10.1093/femsml/uqac020}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313292}, year = {2022}, abstract = {Transcriptome analysis of individual cells by single-cell RNA-seq (scRNA-seq) has become routine for eukaryotic tissues, even being applied to whole multicellular organisms. In contrast, developing methods to read the transcriptome of single bacterial cells has proven more challenging, despite a general perception of bacteria as much simpler than eukaryotes. Bacterial cells are harder to lyse, their RNA content is about two orders of magnitude lower than that of eukaryotic cells, and bacterial mRNAs are less stable than their eukaryotic counterparts. Most importantly, bacterial transcripts lack functional poly(A) tails, precluding simple adaptation of popular standard eukaryotic scRNA-seq protocols that come with the double advantage of specific mRNA amplification and concomitant depletion of rRNA. However, thanks to very recent breakthroughs in methodology, bacterial scRNA-seq is now feasible. This short review will discuss recently published bacterial scRNA-seq approaches (MATQ-seq, microSPLiT, and PETRI-seq) and a spatial transcriptomics approach based on multiplexed in situ hybridization (par-seqFISH). Together, these novel approaches will not only enable a new understanding of cell-to-cell variation in bacterial gene expression, they also promise a new microbiology by enabling high-resolution profiling of gene activity in complex microbial consortia such as the microbiome or pathogens as they invade, replicate, and persist in host tissue.}, language = {en} }