@article{MontalbandelBarrioPenskiSchlahsaetal.2016, author = {Montalb{\´a}n del Barrio, Itsaso and Penski, Cornelia and Schlahsa, Laura and Stein, Roland G. and Diessner, Joachim and W{\"o}ckel, Achim and Dietl, Johannes and Lutz, Manfred B. and Mittelbronn, Michel and Wischhusen, J{\"o}rg and H{\"a}usler, Sebastian F. M.}, title = {Adenosine-generating ovarian cancer cells attract myeloid cells which differentiate into adenosine-generating tumor associated macrophages - a self-amplifying, CD39- and CD73-dependent mechanism for tumor immune escape}, series = {Journal for ImmunoTherapy of Cancer}, volume = {4}, journal = {Journal for ImmunoTherapy of Cancer}, number = {49}, doi = {10.1186/s40425-016-0154-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146624}, year = {2016}, abstract = {Background Ovarian cancer (OvCA) tissues show abundant expression of the ectonucleotidases CD39 and CD73 which generate immunomodulatory adenosine, thereby inhibiting cytotoxic lymphocytes. Little, however, is known about the effect of adenosine on myeloid cells. Considering that tumor associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC) constitute up to 20 \% of OvCA tissue, we investigated the effect of adenosine on myeloid cells and explored a possible contribution of myeloid cells to adenosine generation in vitro and ex vivo. Methods Monocytes were used as human blood-derived myeloid cells. After co-incubation with SK-OV-3 or OAW-42 OvCA cells, monocyte migration was determined in transwell assays. For conversion into M2-polarized "TAM-like" macrophages, monocytes were co-incubated with OAW-42 cells. Ex vivo TAMs were obtained from OvCA ascites. Macrophage phenotypes were investigated by intracellular staining for IL-10 and IL-12. CD39 and CD73 expression were assessed by FACS analysis both on in vitro-induced TAM-like macrophages and on ascites-derived ex situ-TAMs. Myeloid cells in solid tumor tissue were analyzed by immunohistochemistry. Generation of biologically active adenosine by TAM-like macrophages was measured in luciferase-based reporter assays. Functional effects of adenosine were investigated in proliferation-experiments with CD4+ T cells and specific inhibitors. Results When CD39 or CD73 activity on OvCA cells were blocked, the migration of monocytes towards OvCA cells was significantly decreased. In vivo, myeloid cells in solid ovarian cancer tissue were found to express CD39 whereas CD73 was mainly detected on stromal fibroblasts. Ex situ-TAMs and in vitro differentiated TAM-like cells, however, upregulated the expression of CD39 and CD73 compared to monocytes or M1 macrophages. Expression of ectonucleotidases also translated into increased levels of biologically active adenosine. Accordingly, co-incubation with these TAMs suppressed CD4+ T cell proliferation which could be rescued via blockade of CD39 or CD73. Conclusion Adenosine generated by OvCA cells likely contributes to the recruitment of TAMs which further amplify adenosine-dependent immunosuppression via additional ectonucleotidase activity. In solid ovarian cancer tissue, TAMs express CD39 while CD73 is found on stromal fibroblasts. Accordingly, small molecule inhibitors of CD39 or CD73 could improve immune responses in ovarian cancer.}, language = {en} } @article{KarikariMcFlederRibechinietal.2022, author = {Karikari, Akua A. and McFleder, Rhonda L. and Ribechini, Eliana and Blum, Robert and Bruttel, Valentin and Knorr, Susanne and Gehmeyr, Mona and Volkmann, Jens and Brotchie, Jonathan M. and Ahsan, Fadhil and Haack, Beatrice and Monoranu, Camelia-Maria and Keber, Ursula and Yeghiazaryan, Rima and Pagenstecher, Axel and Heckel, Tobias and Bischler, Thorsten and Wischhusen, J{\"o}rg and Koprich, James B. and Lutz, Manfred B. and Ip, Chi Wang}, title = {Neurodegeneration by α-synuclein-specific T cells in AAV-A53T-α-synuclein Parkinson's disease mice}, series = {Brain, Behavior, and Immunity}, volume = {101}, journal = {Brain, Behavior, and Immunity}, doi = {10.1016/j.bbi.2022.01.007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300600}, pages = {194 -- 210}, year = {2022}, abstract = {Background Antigen-specific neuroinflammation and neurodegeneration are characteristic for neuroimmunological diseases. In Parkinson's disease (PD) pathogenesis, α-synuclein is a known culprit. Evidence for α-synuclein-specific T cell responses was recently obtained in PD. Still, a causative link between these α-synuclein responses and dopaminergic neurodegeneration had been lacking. We thus addressed the functional relevance of α-synuclein-specific immune responses in PD in a mouse model. Methods We utilized a mouse model of PD in which an Adeno-associated Vector 1/2 serotype (AAV1/2) expressing human mutated A53T-α-Synuclein was stereotactically injected into the substantia nigra (SN) of either wildtype C57BL/6 or Recombination-activating gene 1 (RAG1)\(^{-/-}\) mice. Brain, spleen, and lymph node tissues from different time points following injection were then analyzed via FACS, cytokine bead assay, immunohistochemistry and RNA-sequencing to determine the role of T cells and inflammation in this model. Bone marrow transfer from either CD4\(^{+}\)/CD8\(^{-}\), CD4\(^{-}\)/CD8\(^{+}\), or CD4\(^{+}\)/CD8\(^{+}\) (JHD\(^{-/-}\)) mice into the RAG-1\(^{-/-}\) mice was also employed. In addition to the in vivo studies, a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay was utilized. Results AAV-based overexpression of pathogenic human A53T-α-synuclein in dopaminergic neurons of the SN stimulated T cell infiltration. RNA-sequencing of immune cells from PD mouse brains confirmed a pro-inflammatory gene profile. T cell responses were directed against A53T-α-synuclein-peptides in the vicinity of position 53 (68-78) and surrounding the pathogenically relevant S129 (120-134). T cells were required for α-synuclein-induced neurodegeneration in vivo and in vitro, while B cell deficiency did not protect from dopaminergic neurodegeneration. Conclusions Using T cell and/or B cell deficient mice and a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay, we confirmed in vivo and in vitro that pathogenic α-synuclein peptide-specific T cell responses can cause dopaminergic neurodegeneration and thereby contribute to PD-like pathology.}, language = {en} } @article{SchlesingerWeissbrichWedekinketal.2020, author = {Schlesinger, Tobias and Weißbrich, Benedikt and Wedekink, Florian and Notz, Quirin and Herrmann, Johannes and Krone, Manuel and Sitter, Magdalena and Schmid, Benedikt and Kredel, Markus and Stumpner, Jan and D{\"o}lken, Lars and Wischhusen, J{\"o}rg and Kranke, Peter and Meybohm, Patrick and Lotz, Christpher}, title = {Biodistribution and serologic response in SARS-CoV-2 induced ARDS: A cohort study}, series = {PLoS One}, volume = {15, 2020}, journal = {PLoS One}, number = {11}, doi = {10.1371/journal.pone.0242917}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231348}, year = {2020}, abstract = {Background The viral load and tissue distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain important questions. The current study investigated SARS-CoV-2 viral load, biodistribution and anti-SARS-CoV-2 antibody formation in patients suffering from severe corona virus disease 2019 (COVID-19) induced acute respiratory distress syndrome (ARDS). Methods This is a retrospective single-center study in 23 patients with COVID-19-induced ARDS. Data were collected within routine intensive care. SARS-CoV-2 viral load was assessed via reverse transcription quantitative polymerase chain reaction (RT-qPCR). Overall, 478 virology samples were taken. Anti-SARS-CoV-2-Spike-receptor binding domain (RBD) antibody detection of blood samples was performed with an enzyme-linked immunosorbent assay. Results Most patients (91\%) suffered from severe ARDS during ICU treatment with a 30-day mortality of 30\%. None of the patients received antiviral treatment. Tracheal aspirates tested positive for SARS-CoV-2 in 100\% of the cases, oropharyngeal swabs only in 77\%. Blood samples were positive in 26\% of the patients. No difference of viral load was found in tracheal or blood samples with regard to 30-day survival or disease severity. SARS-CoV-2 was never found in dialysate. Serologic testing revealed significantly lower concentrations of SARS-CoV-2 neutralizing IgM and IgA antibodies in survivors compared to non-survivors (p = 0.009). Conclusions COVID-19 induced ARDS is accompanied by a high viral load of SARS-CoV-2 in tracheal aspirates, which remained detectable in the majority throughout intensive care treatment. Remarkably, SARS-CoV-2 RNA was never detected in dialysate even in patients with RNAemia. Viral load or the buildup of neutralizing antibodies was not associated with 30-day survival or disease severity.}, language = {en} }