@article{KollgaardUgurelBeckerIdornetal.2015, author = {K{\o}llgaard, Tania and Ugurel-Becker, Selma and Idorn, Manja and Andersen, Mads Hald and Becker, J{\"u}rgen C. and Straten, Per thor}, title = {Pre-Vaccination Frequencies of Th17 Cells Correlate with Vaccine-Induced T-Cell Responses to Survivin-Derived Peptide Epitopes}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {7}, doi = {10.1371/journal.pone.0131934}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151509}, pages = {e0131934}, year = {2015}, abstract = {Various subsets of immune regulatory cells are suggested to influence the outcome of therapeutic antigen-specific anti-tumor vaccinations. We performed an exploratory analysis of a possible correlation of pre-vaccination Th17 cells, MDSCs, and Tregs with both vaccination-induced T-cell responses as well as clinical outcome in metastatic melanoma patients vaccinated with survivin-derived peptides. Notably, we observed dysfunctional Th1 and cytotoxic T cells, i.e. down-regulation of the CD3\(\zeta\)chain (p=0.001) and an impaired IFN\(\gamma\)-production (p=0.001) in patients compared to healthy donors, suggesting an altered activity of immune regulatory cells. Moreover, the frequencies of Th17 cells (p=0.03) and Tregs (p=0.02) were elevated as compared to healthy donors. IL-17-secreting CD4\(^{+}\) T cells displayed an impact on the immunological and clinical effects of vaccination: Patients characterized by high frequencies of Th17 cells at pre-vaccination were more likely to develop survivin-specific T-cell reactivity post-vaccination (p=0.03). Furthermore, the frequency of Th17 (p=0.09) and Th17/IFN\(\gamma\)\(^{+}\) (p=0.19) cells associated with patient survival after vaccination. In summary, our explorative, hypothesis-generating study demonstrated that immune regulatory cells, in particular Th17 cells, play a relevant role for generation of the vaccine-induced anti-tumor immunity in cancer patients, hence warranting further investigation to test for validity as predictive biomarkers.}, language = {en} } @article{BuderLapaKreissletal.2014, author = {Buder, Kristina and Lapa, Constantin and Kreissl, Michael C. and Schirbel, Andreas and Herrmann, Ken and Schnack, Alexander and Br{\"o}cker, Eva-Bettina and Goebeler, Matthias and Buck, Andreas K. and Becker, J{\"u}rgen C.}, title = {"Somatostatin receptor expression in Merkel cell carcinoma as target for molecular imaging"}, doi = {10.1186/1471-2407-14-268}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110326}, year = {2014}, abstract = {Background Merkel cell carcinoma (MCC) is a rare cutaneous neoplasm with increasing incidence, aggressive behavior and poor prognosis. Somatostatin receptors (SSTR) are expressed in MCC and represent a potential target for both imaging and treatment. Methods To non-invasively assess SSTR expression in MCC using PET and the radiotracers [68Ga]DOTA-D-Phe1-Tyr3-octreotide (DOTATOC) or -octreotate (DOTATATE) as surrogate for tumor burden. In 24 patients with histologically proven MCC SSTR-PET was performed and compared to results of computed tomography (CT). Results SSTR-PET detected primary and metastatic MCC lesions. On a patient-based analysis, sensitivity of SSTR-PET was 73\% for nodal metastases, 100\% for bone, and 67\% for soft-tissue metastases, respectively. Notably, brain metastases were initially detected by SSTR-PET in 2 patients, whereas liver and lung metastases were diagnosed exclusively by CT. SSTR-PET showed concordance to CT results in 20 out of 24 patients. Four patients (17\%) were up-staged due to SSTR-PET and patient management was changed in 3 patients (13\%). Conclusion SSTR-PET showed high sensitivity for imaging bone, soft tissue and brain metastases, and particularly in combination with CT had a significant impact on clinical stage and patient management.}, language = {en} } @article{HoubenHesbacherSchmidetal.2011, author = {Houben, Roland and Hesbacher, Sonja and Schmid, Corinna P. and Kauczok, Claudia S. and Flohr, Ulrike and Haferkamp, Sebastian and M{\"u}ller, Cornelia S. L. and Schrama, David and Wischhusen, J{\"o}rg and Becker, J{\"u}rgen C.}, title = {High-Level Expression of Wild-Type p53 in Melanoma Cells is Frequently Associated with Inactivity in p53 Reporter Gene Assays}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69012}, year = {2011}, abstract = {Background: Inactivation of the p53 pathway that controls cell cycle progression, apoptosis and senescence, has been proposed to occur in virtually all human tumors and p53 is the protein most frequently mutated in human cancer. However, the mutational status of p53 in melanoma is still controversial; to clarify this notion we analysed the largest series of melanoma samples reported to date. Methodology/Principal Findings: Immunohistochemical analysis of more than 180 melanoma specimens demonstrated that high levels of p53 are expressed in the vast majority of cases. Subsequent sequencing of the p53 exons 5-8, however, revealed only in one case the presence of a mutation. Nevertheless, by means of two different p53 reporter constructs we demonstrate transcriptional inactivity of wild type p53 in 6 out of 10 melanoma cell lines; the 4 other p53 wild type melanoma cell lines exhibit p53 reporter gene activity, which can be blocked by shRNA knock down of p53. Conclusions/Significance: In melanomas expressing high levels of wild type p53 this tumor suppressor is frequently inactivated at transcriptional level.}, subject = {Krebs }, language = {en} } @article{HaferkampHesbacherWeyandtetal.2014, author = {Haferkamp, Sebastian and Hesbacher, Sonja and Weyandt, Gerhard and Vetter-Kauczok, Claudia S. and Becker, J{\"u}rgen C. and Motschenbacher, Stephanie and Wobser, Marion and Maier, Melissa and Schmid, Corinna P. and Houben, Roland}, title = {p53 regulation by TRP2 is not pervasive in melanoma}, doi = {10.1371/journal.pone.0087440}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111396}, year = {2014}, abstract = {p53 is a central tumor suppressor protein and its inhibition is believed to be a prerequisite for cancer development. In approximately 50\% of all malignancies this is achieved by inactivating mutations in the p53 gene. However, in several cancer entities, including melanoma, p53 mutations are rare. It has been recently proposed that tyrosinase related protein 2 (TRP2), a protein involved in melanin synthesis, may act as suppressor of the p53 pathway in melanoma. To scrutinize this notion we analyzed p53 and TRP2 expression by immunohistochemistry in 172 melanoma tissues and did not find any correlation. Furthermore, we applied three different TRP2 shRNAs to five melanoma cell lines and could not observe a target specific effect of the TRP2 knockdown on either p53 expression nor p53 reporter gene activity. Likewise, ectopic expression of TRP2 in a TRP2 negative melanoma cell line had no impact on p53 expression. In conclusion our data suggest that p53 repression critically controlled by TRP2 is not a general event in melanoma.}, language = {en} } @article{BeckerAndersenHofmeisterMuelleretal.2012, author = {Becker, J{\"u}rgen C. and Andersen, Mads H. and Hofmeister-M{\"u}ller, Valeska and Wobser, Marion and Frey, Lidia and Sandig, Christiane and Walter, Steffen and Singh-Jasuja, Harpreet and K{\"a}mpgen, Eckhart and Opitz, Andreas and Zapatka, Marc and Br{\"o}cker, Eva-B. and thor Straten, Per and Schrama, David and Ugurel, Selma}, title = {Survivin-specific T-cell reactivity correlates with tumor response and patient survival: a phase-II peptide vaccination trial in metastatic melanoma}, series = {Cancer Immunology, Immunotherapy}, volume = {61}, journal = {Cancer Immunology, Immunotherapy}, number = {11}, doi = {10.1007/s00262-012-1266-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126215}, pages = {2091-2103}, year = {2012}, abstract = {Background Therapeutic vaccination directed to induce an anti-tumoral T-cell response is a field of extensive investigation in the treatment of melanoma. However, many vaccination trials in melanoma failed to demonstrate a correlation between the vaccine-specific immune response and therapy outcome. This has been mainly attributed to immune escape by antigen loss, rendering us in the need of new vaccination targets. Patients and methods This phase-II trial investigated a peptide vaccination against survivin, an oncogenic inhibitor-of-apoptosis protein crucial for the survival of tumor cells, in HLA-A1/-A2/-B35-positive patients with treatment-refractory stage-IV metastatic melanoma. The study endpoints were survivin-specific T-cell reactivity (SSTR), safety, response, and survival (OS). Results Sixty-one patients (ITT) received vaccination therapy using three different regimens. 55 patients (PP) were evaluable for response and survival, and 41/55 for SSTR. Patients achieving progression arrest (CR + PR + SD) more often showed SSTRs than patients with disease progression (p = 0.0008). Patients presenting SSTRs revealed a prolonged OS (median 19.6 vs. 8.6 months; p = 0.0077); multivariate analysis demonstrated SSTR as an independent predictor of survival (p = 0.013). The induction of SSTRs was associated with gender (female vs. male; p = 0.014) and disease stage (M1a/b vs. M1c; p = 0.010), but not with patient age, HLA type, performance status, or vaccination regimen. Conclusion Survivin-specific T-cell reactivities strongly correlate with tumor response and patient survival, indicating that vaccination with survivin-derived peptides is a promising treatment strategy in melanoma.}, language = {en} } @article{BeckerAndersenHofmeisterMuelleretal.2012, author = {Becker, J{\"u}rgen C. and Andersen, Mads H. and Hofmeister-M{\"u}ller, Valeska and Wobser, Marion and Frey, Lidia and Sandig, Christiane and Walter, Steffen and Singh-Jasuja, Harpreet and K{\"a}mpgen, Eckhart and Opitz, Andreas and Zapatka, Marc and Br{\"o}cker, Eva-B. and thor Straten, Per and Schrama, David and Ugurel, Selma}, title = {Survivin-specific T-cell reactivity correlates with tumor response and patient survival: a phase-II peptide vaccination trial in metastatic melanoma}, series = {Cancer Immunology, Immunotherapy}, volume = {61}, journal = {Cancer Immunology, Immunotherapy}, number = {11}, doi = {10.1007/s00262-012-1266-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124830}, pages = {2091-2103}, year = {2012}, abstract = {Background Therapeutic vaccination directed to induce an anti-tumoral T-cell response is a field of extensive investigation in the treatment of melanoma. However, many vaccination trials in melanoma failed to demonstrate a correlation between the vaccine-specific immune response and therapy outcome. This has been mainly attributed to immune escape by antigen loss, rendering us in the need of new vaccination targets. Patients and methods This phase-II trial investigated a peptide vaccination against survivin, an oncogenic inhibitor-of-apoptosis protein crucial for the survival of tumor cells, in HLA-A1/-A2/-B35-positive patients with treatment-refractory stage-IV metastatic melanoma. The study endpoints were survivin-specific T-cell reactivity (SSTR), safety, response, and survival (OS). Results Sixty-one patients (ITT) received vaccination therapy using three different regimens. 55 patients (PP) were evaluable for response and survival, and 41/55 for SSTR. Patients achieving progression arrest (CR + PR + SD) more often showed SSTRs than patients with disease progression (p = 0.0008). Patients presenting SSTRs revealed a prolonged OS (median 19.6 vs. 8.6 months; p = 0.0077); multivariate analysis demonstrated SSTR as an independent predictor of survival (p = 0.013). The induction of SSTRs was associated with gender (female vs. male; p = 0.014) and disease stage (M1a/b vs. M1c; p = 0.010), but not with patient age, HLA type, performance status, or vaccination regimen. Conclusion Survivin-specific T-cell reactivities strongly correlate with tumor response and patient survival, indicating that vaccination with survivin-derived peptides is a promising treatment strategy in melanoma.}, language = {en} } @article{AlbSieAdametal.2012, author = {Alb, Miriam and Sie, Christopher and Adam, Christian and Chen, Suzie and Becker, J{\"u}rgen C. and Schrama, David}, title = {Cellular and cytokine-dependent immunosuppressive mechanisms of grm1-transgenic murine melanoma}, series = {Cancer Immunology, Immunotherapy}, volume = {61}, journal = {Cancer Immunology, Immunotherapy}, number = {12}, doi = {10.1007/s00262-012-1290-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125096}, pages = {2239-2249}, year = {2012}, abstract = {Grm1-transgenic mice spontaneously develop cutaneous melanoma. This model allowed us to scrutinize the generic immune responses over the course of melanoma development. To this end, lymphocytes obtained from spleens, unrelated lymph nodes and tumor-draining lymph nodes of mice with no evidence of disease, and low or high tumor burden were analyzed ex vivo and in vitro. Thereby, we could demonstrate an increase in the number of activated CD4\(^+\) and CD8+ lymphocytes in the respective organs with increasing tumor burden. However, mainly CD4\(^+\) T cells, which could constitute both T helper as well as immunosuppressive regulatory T cells, but not CD8\(^+\) T cells, expressed activation markers upon in vitro stimulation when obtained from tumor-bearing mice. Interestingly, these cells from tumor-burdened animals were also functionally hampered in their proliferative response even when subjected to strong in vitro stimulation. Further analyses revealed that the increased frequency of regulatory T cells in tumor-bearing mice is an early event present in all lymphoid organs. Additionally, expression of the immunosuppressive cytokines TGF-β1 and IL-10 became more evident with increased tumor burden. Notably, TGF-β1 is strongly expressed in both the tumor and the tumor-draining lymph node, whereas IL-10 expression is more pronounced in the lymph node, suggesting a more complex regulation of IL-10. Thus, similar to the situation in melanoma patients, both cytokines as well as cellular immune escape mechanisms seem to contribute to the observed immunosuppressed state of tumor-bearing grm1-transgenic mice, suggesting that this model is suitable for preclinical testing of immunomodulatory therapeutics.}, language = {en} } @article{BuderMuellerBeekmannetal.2014, author = {Buder, Kristina and M{\"u}ller, Philip A. and Beekmann, Gabriele and Ugurel, Selma and Br{\"o}cker, Eva-Bettina and Becker, J{\"u}rgen C.}, title = {Denileukin Diftitox plus Total Skin Electron Beam Radiation in Patients with Treatment-refractory Cutaneous T-cell Lymphoma (Mycosis Fungoides): Report of Four Cases}, series = {Acta Dermato-Venereologica}, volume = {94}, journal = {Acta Dermato-Venereologica}, doi = {10.2340/00015555-1627}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120091}, pages = {94-96}, year = {2014}, abstract = {Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma (CTCL) (1). Most patients initially respond well to standard therapy, but advanced MF is often treatment refractory. Thus, a combination of the available treatment options is an important strategy. Total skin electron beam radiation (TSEB) is effective in MF, with a complete remission rate of up to 90\% in the early stages. However, in patients with more advanced stages, remission rates are considerably lower (2, 3). Denileukin diftitox (DD) (Ontak®) is a recombinant fusion protein of the receptor-binding domain of interleukin (IL)-2 and the enzymatic and translocation domains of diphtheria toxin (4). It targets the alpha-subunit of the IL-2-receptor (CD25). There are no reports on this combination therapy in MF.}, language = {en} } @article{HafnerHoubenBaeurleetal.2012, author = {Hafner, Christian and Houben, Roland and Baeurle, Anne and Ritter, Cathrin and Schrama, David and Landthaler, Michael and Becker, J{\"u}rgen C.}, title = {Activation of the PI3K/AKT Pathway in Merkel Cell Carcinoma}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {2}, doi = {10.1371/journal.pone.0031255}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131398}, pages = {e31255}, year = {2012}, abstract = {Merkel cell carcinoma (MCC) is a highly aggressive skin cancer with an increasing incidence. The understanding of the molecular carcinogenesis of MCC is limited. Here, we scrutinized the PI3K/AKT pathway, one of the major pathways activated in human cancer, in MCC. Immunohistochemical analysis of 41 tumor tissues and 9 MCC cell lines revealed high levels of AKT phosphorylation at threonine 308 in 88\% of samples. Notably, the AKT phosphorylation was not correlated with the presence or absence of the Merkel cell polyoma virus (MCV). Accordingly, knock-down of the large and small T antigen by shRNA in MCV positive MCC cells did not affect phosphorylation of AKT. We also analyzed 46 MCC samples for activating PIK3CA and AKT1 mutations. Oncogenic PIK3CA mutations were found in 2/46 (4\%) MCCs whereas mutations in exon 4 of AKT1 were absent. MCC cell lines demonstrated a high sensitivity towards the PI3K inhibitor LY-294002. This finding together with our observation that the PI3K/AKT pathway is activated in the majority of human MCCs identifies PI3K/AKT as a potential new therapeutic target for MCC patients.}, language = {en} } @article{SarmaWillmesAngereretal.2020, author = {Sarma, Bhavishya and Willmes, Christoph and Angerer, Laura and Adam, Christian and Becker, J{\"u}rgen C. and Kervarrec, Thibault and Schrama, David and Houben, Roland}, title = {Artesunate affects T antigen expression and survival of virus-positive Merkel cell carcinoma}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {4}, issn = {2072-6694}, doi = {10.3390/cancers12040919}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203851}, year = {2020}, abstract = {Merkel cell carcinoma (MCC) is a rare and highly aggressive skin cancer with frequent viral etiology. Indeed, in about 80\% of cases, there is an association with Merkel cell polyomavirus (MCPyV); the expression of viral T antigens is crucial for growth of virus-positive tumor cells. Since artesunate — a drug used to treat malaria — has been reported to possess additional anti-tumor as well as anti-viral activity, we sought to evaluate pre-clinically the effect of artesunate on MCC. We found that artesunate repressed growth and survival of MCPyV-positive MCC cells in vitro. This effect was accompanied by reduced large T antigen (LT) expression. Notably, however, it was even more efficient than shRNA-mediated downregulation of LT expression. Interestingly, in one MCC cell line (WaGa), T antigen knockdown rendered cells less sensitive to artesunate, while for two other MCC cell lines, we could not substantiate such a relation. Mechanistically, artesunate predominantly induces ferroptosis in MCPyV-positive MCC cells since known ferroptosis-inhibitors like DFO, BAF-A1, Fer-1 and β-mercaptoethanol reduced artesunate-induced death. Finally, application of artesunate in xenotransplanted mice demonstrated that growth of established MCC tumors can be significantly suppressed in vivo. In conclusion, our results revealed a highly anti-proliferative effect of the approved and generally well-tolerated anti-malaria compound artesunate on MCPyV-positive MCC cells, suggesting its potential usage for MCC therapy.}, language = {en} }