@article{RichterHuettmannRekowskietal.2019, author = {Richter, Julia and H{\"u}ttmann, Andreas and Rekowski, Jan and Schmitz, Christine and G{\"a}rtner, Selina and Rosenwald, Andreas and Hansmann, Martin-Leo and Hartmann, Sylvia and M{\"o}ller, Peter and Wacker, Hans-Heinrich and Feller, Alfred and Thorns, Christoph and M{\"u}ller, Stefan and D{\"u}hrsen, Ulrich and Klapper, Wolfram}, title = {Molecular characteristics of diffuse large B-cell lymphoma in the Positron Emission Tomography-Guided Therapy of Aggressive Non-Hodgkin lymphomas (PETAL) trial: correlation with interim PET and outcome}, series = {Blood Cancer Journal}, volume = {9}, journal = {Blood Cancer Journal}, doi = {10.1038/s41408-019-0230-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226185}, pages = {67}, year = {2019}, abstract = {No abstract available}, language = {en} } @phdthesis{Moeller2022, author = {M{\"o}ller, Jan}, title = {Mechanisms and consequences of µ-opioid receptor dimerization}, doi = {10.25972/OPUS-21986}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219862}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {One third of all market approved drugs target G protein coupled receptors (GPCRs), covering a highly diverse spectrum of indications reaching from acute anti-allergic treatment over bloodpressure regulation, Parkinson's disease, schizophrenia up to the treatment of severe pain. GPCRs are key signaling proteins that mostly function as monomers, but for several receptors constitutive dimer formation has been described and in some cases is essential for function. I have investigated this problem using the μ-opioid receptor (µOR) as a model system - based both on its pharmacological importance and on specific biochemical data suggesting that it may present a particularly intriguing case of mono- vs- dimerization. The µOR is the prime target for the treatment of severe pain. In its inactive conformation it crystallizes as homodimer when bound to the antagonist β- funaltrexamine (β-FNA), whereas the active, agonist-bound receptor crystallizes as a monomer. Using single-molecule microscopy combined with superresolution techniques on intact cells, I describe here a dynamic monomer-dimer equilibrium of µORs where dimer formation is driven by specific agonists. The agonist DAMGO, but not morphine, induces dimer formation in a process that correlates temporally and, in its agonist, and phosphorylation dependence with β-arrestin2 binding to the receptors. This dimerization is independent from but may precede µOR internalization. Furthermore, the results show that the μOR tends to stay, on the cell surface, within compartments defined by actin fibers and its mobility is modulated by receptor activation. These data suggest a new level of GPCR regulation that links receptor compartmentalization and dimer formation to specific agonists and their downstream signals.}, subject = {Opiatrezeptor}, language = {en} }